-->
LATEST HEADLINES
66th REPUBLIC DAY WISHES TO ALL INDIANSZizix Tutorials
LATEST POSTS TIME OF NOW
Showing posts with label STRUCTURE OF COSMOS. Show all posts
Showing posts with label STRUCTURE OF COSMOS. Show all posts

Researchers detect possible signal from dark matter

Could there finally be tangible evidence for the existence of dark matter in the Universe? After sifting through reams of X-ray data, scientists in EPFL's Laboratory of Particle Physics and Cosmology (LPPC) and Leiden University believe they could have identified the signal of a particle of dark matter. Credit: Image courtesy of Ecole Polytechnique Fédérale de Lausanne (screen shot from video)
Could there finally be tangible evidence for the existence of dark matter in the Universe? After sifting through reams of X-ray data, scientists in EPFL's Laboratory of Particle Physics and Cosmology (LPPC) and Leiden University believe they could have identified the signal of a particle of dark matter. This substance, which up to now has been purely hypothetical, is run by none of the standard models of physics other than through the gravitational force. Their research will be published next week in Physical Review Letters.

When physicists study the dynamics of galaxies and the movement of stars, they are confronted with a mystery. If they only take visible matter into account, their equations simply don't add up: the elements that can be observed are not sufficient to explain the rotation of objects and the existing gravitational forces. There is something missing. From this they deduced that there must be an invisible kind of matter that does not interact with light, but does, as a whole, interact by means of the gravitational force. Called "dark matter," this substance appears to make up at least 80% of the Universe.
Andromeda and Perseus revisited

Two groups have recently announced that they have detected the much sought after signal. One of them, led by EPFL scientists Oleg Ruchayskiy and Alexey Boyarsky, also a professor at Leiden University in the Netherlands, found it by analyzing X-rays emitted by two celestial objects -- the Perseus galaxy cluster and the Andromeda galaxy. After having collected thousands of signals from the ESA's XMM-Newton telescope and eliminated all those coming from known particles and atoms, they detected an anomaly that, even considering the possibility of instrument or measurement error, caught their attention.

The signal appears in the X-ray spectrum as a weak, atypical photon emission that could not be attributed to any known form of matter. Above all, "the signal's distribution within the galaxy corresponds exactly to what we were expecting with dark matter, that is, concentrated and intense in the center of objects and weaker and diffuse on the edges," explains Ruchayskiy. "With the goal of verifying our findings, we then looked at data from our own galaxy, the Milky Way, and made the same observations," says Boyarsky.

A new era

The signal comes from a very rare event in the Universe: a photon emitted due to the destruction of a hypothetical particle, possibly a "sterile neutrino." If the discovery is confirmed, it will open up new avenues of research in particle physics. Apart from that, "It could usher in a new era in astronomy," says Ruchayskiy. "Confirmation of this discovery may lead to construction of new telescopes specially designed for studying the signals from dark matter particles," adds Boyarsky. "We will know where to look in order to trace dark structures in space and will be able to reconstruct how the Universe has formed."

WATCH VIDEO


Source: Ecole Polytechnique Fédérale de Lausanne

'Eye of Sauron' provides new way of measuring distances to galaxies

This image shows the spiral galaxy NGC 4151. Credit: X-ray: NASA/CXC/CfA/J.Wang et al.; Optical: Isaac Newton Group of Telescopes, La Palma/Jacobus Kapteyn Telescope; Radio: NSF/NRAO/VLA.
A team of scientists, led by Dr Sebastian Hoenig from the University of Southampton, have developed a new way of measuring precise distances to galaxies tens of millions of light years away, using the W. M. Keck Observatory near the summit of Mauna Kea in Hawaii.

The method is similar to what land surveyors use on Earth, by measuring the physical and angular, or 'apparent', size of a standard ruler in the galaxy, to calibrate the distance from this information.
The research, which is published in the journal Nature, was used to identify the accurate distance of the nearby NGC4151 galaxy, which wasn't previously available. The galaxy NGC 4151, which is dubbed the 'Eye of Sauron' by astronomers for its similarity to the film depiction of the eye of the character in The Lord of the Rings, is important for accurately measuring black hole masses.
Recently reported distances range from 4 to 29 megaparsecs, but using this new method the researchers calculated the distance of 19 megaparsecs to the supermassive black hole.
Indeed, as in the famous saga, a ring plays a crucial role in this new measurement. All big galaxies in the universe host a supermassive black hole in their centre and in about a tenth of all galaxies, these supermassive black holes are growing by swallowing huge amounts of gas and dust from their surrounding environments. In this process, the material heats up and becomes very bright -- becoming the most energetic sources of emission in the universe known as active galactic nuclei (AGN).

The hot dust forms a ring around the supermassive black hole and emits infrared radiation, which the researchers used as the ruler. However, the apparent size of this ring is so small that the observations were carried out using infrared interferometry to combine W. M. Keck Observatory's twin 10-meter telescopes, to achieve the resolution power of an 85m telescope.

To measure the physical size of the dusty ring, the researchers measured the time delay between the emission of light from very close to the black hole and the infrared emission. This delay is the distance the light has to travel (at the speed-of-light) from close to the black hole out to the hot dust.

By combining this physical size of the dust ring with the apparent size measured with the data from the Keck interferometer, the researchers were able to determine a distance to the galaxy NGC 4151.

Dr Hoenig says: "One of the key findings is that the distance determined in this new fashion is quite precise -- with only about 10 per cent uncertainty. In fact, if the current result for NGC 4151 holds for other objects, it can potentially beat any other current methods to reach the same precision to determine distances for remote galaxies directly based on simple geometrical principles. Moreover, it can be readily used on many more sources than the current most precise method."

"Such distances are key in pinning down the cosmological parameters that characterise our universe or for accurately measuring black hole masses. Indeed, NGC 4151 is a crucial anchor to calibrate various techniques to estimate black hole masses. Our new distance implies that these masses may have been systematically underestimated by 40 per cent."

Dr Hoenig, together with colleagues in Denmark and Japan, is currently setting up a new program to extend their work to many more AGN. The goal is to establish precise distances to a dozen galaxies in this new way and use them to constrain cosmological parameters to within a few per cent. In combination with other measurements, this will provide a better understanding of the history of expansion of our universe.

Source: University of Southampton
Environment Now
Technology+Physics
Health + Medicine
Plants + Animals
SPACE + TIME
Science + Society

 
BREAKING NEWS