-->
LATEST HEADLINES
66th REPUBLIC DAY WISHES TO ALL INDIANSZizix Tutorials
LATEST POSTS TIME OF NOW

Solar photons drive water off the moon

Lunar sample in vacuum. A lunar sample in a ultra-high vacuum system is hit with ultraviolet (157 nm) photons to simulate conditions in space. Credit: Image courtesy of Georgia Institute of Technology
Water is thought to be embedded in the moon's rocks or, if cold enough, "stuck" on their surfaces. It's predominantly found at the poles. But scientists probably won't find it intact on the sunlit side.

New research at the Georgia Institute of Technology indicates that ultraviolet photons emitted by the sun likely cause H2O molecules to either quickly desorb or break apart. The fragments of water may remain on the lunar surface, but the presence of useful amounts of water on the sunward side is not likely.

The Georgia Tech team built an ultra-high vacuum system that simulates conditions in space, then performed the first-ever reported measurement of the water photodesorption cross section from an actual lunar sample. The machine zapped a small piece of the moon with ultraviolet (157 nm) photons to create excited states and watched what happened to the water molecules. They either came off with a cross section of ~ 6 x 10−19 cm2 or broke apart with a cross section of ~ 5 x 10−19 cm2.. According to the team's measurements, approximately one in every 1,000 molecules leave the lunar surface simply due to absorption of UV light.

Georgia Tech's cross section values can now be used by scientists attempting to find water throughout the solar system and beyond.

"The cross section is an important number planetary scientists, astrochemists and the astrophysics community need for models regarding the fate of water on comets, moons, asteroids, other airless bodies and interstellar grains," said Thomas Orlando, the Georgia Tech professor who led the study.

The number is relatively large, which establishes that solar UV photons are likely removing water from the moon's surface. This research, which was carried out primarily by former Georgia Tech Ph.D. student Alice DeSimone, indicates the cross sections increase even more with decreasing water coverage. That's why it's not likely that water remains intact as H2O on the sunny side of the moon. Orlando compares it to sitting outside on a summer day.

"If a lot of sunlight is hitting me, the probability of me getting sunburned is pretty high," said Orlando, a professor in the School of Chemistry and Biochemistry and School of Physics. "It's similar on the moon. There's a fixed solar flux of energetic photons that hit the sunlit surface, and there's a pretty good probability they remove water or damage the molecules."

The result, according to Orlando, is the release of molecules such as H2O, H2 and OH as well as the atomic fragments H and O. The research is published in two companion articles in the Journal of Geophysical Research: Planets. The first discusses the water photodesorption. The second paper details the photodissociation of water and the O(3PJ) formation on a lunar impact melt breccia.

Orlando is the associate director of Georgia Tech's Center for Space Technology and Research (C-STAR). C-STAR is an interdisciplinary research center that serves to organize, integrate and facilitate the impact of Georgia Tech's space science and space technology research activities. The center brings together a wide range of Georgia Tech faculty, active in space science and space technology research, and functions as the Institute's focal point for growth of the space industry in the state of Georgia.

Source: Georgia Institute of Technology

New isotopic evidence supporting moon formation via Earth collision with planet-sized body

The moon. A new series of measurements of oxygen isotopes provides increasing evidence that the moon formed from the collision of the Earth with another large, planet-sized astronomical body, around 4.5 billion years ago. Credit: NASA/JPL
A new series of measurements of oxygen isotopes provides increasing evidence that the Moon formed from the collision of Earth with another large, planet-sized astronomical body, around 4.5 billion years ago.

This work will be published in Science on 6th June, and will be presented to the Goldschmidt geochemistry conference in California on 11th June.

Most planetary scientists believe that the Moon formed from an impact between  Earth and a planet-sized body, which has been given the name Theia. Efforts to confirm that the impact had taken place had centred on measuring the ratios between the isotopes of oxygen, titanium, silicon and others. 

These ratios are known to vary throughout the solar system, but their close similarity between Earth and Moon conflicted with theoretical models of the collision that indicated that the Moon would form mostly from Theia, and thus would be expected to be compositionally different from Earth.

Now a group of German researchers, led by Dr. Daniel Herwartz, have used more refined techniques to compare the ratios of 17O/16O in lunar samples, with those from Earth. The team initially used lunar samples which had arrived on Earth via meteorites, but as these samples had exchanged their isotopes with water from Earth, fresher samples were sought. These were provided by NASA from the Apollo 11, 12 and 16 missions; they were found to contain significantly higher levels of 17O/16O than their Earthly counterparts.

Dr Herwartz said "The differences are small and difficult to detect, but they are there. This means two things; firstly we can now be reasonably sure that the Giant collision took place. Secondly, it gives us an idea of the geochemistry of Theia. Theia seems to have been similar to what we call E-type chondrites.If this is true, we can now predict the geochemical and isotopic composition of the Moon, because the present Moon is a mixture of Theia and the early Earth. The next goal is to find out how much material of Theia is in the Moon."

Most models estimate that the Moon it is composed of around 70% to 90% material from Theia, with the remaining 10% to 30% coming from the early Earth. However, some models argue for as little as 8% Theia in the Moon. Dr Herwartz said that the new data indicate that a 50:50 mixture seems possible, but this needs to be confirmed.

The team used an advanced sample preparation technique before measuring the samples via stable isotope ratio mass spectrometry, which showed a 12 parts per million (± 3 ppm) difference in 17O/16O ratio between Earth and Moon.

Source: European Association of Geochemistry

NASA missions let scientists see moon's dancing tide from orbit

Illustration of Earth as seen from the moon. The gravitational tug-of-war between Earth and the moon raises a small bulge on the moon. The position of this bulge shifts slightly over time.
Credit: NASA's Goddard Space Flight Center
Scientists combined observations from two NASA missions to check out the moon's lopsided shape and how it changes under Earth's sway -- a response not seen from orbit before.

The team drew on studies by NASA's Lunar Reconnaissance Orbiter, which has been investigating the moon since 2009, and by NASA's Gravity Recovery and Interior Laboratory, or GRAIL, mission. Because orbiting spacecraft gathered the data, the scientists were able to take the entire moon into account, not just the side that can be observed from Earth.

"The deformation of the moon due to Earth's pull is very challenging to measure, but learning more about it gives us clues about the interior of the moon," said Erwan Mazarico, a scientist with the Massachusetts Institute of Technology in Cambridge, Mass., who works at NASA's Goddard Space Flight Center in Greenbelt, Md.

The lopsided shape of the moon is one result of its gravitational tug-of-war with Earth. The mutual pulling of the two bodies is powerful enough to stretch them both, so they wind up shaped a little like two eggs with their ends pointing toward one another. On Earth, the tension has an especially strong effect on the oceans, because water moves so freely, and is the driving force behind tides.

Earth's distorting effect on the moon, called the lunar body tide, is more difficult to detect, because the moon is solid except for its small core. Even so, there is enough force to raise a bulge about 20 inches (51 centimeters) high on the near side of the moon and similar one on the far side.

The position of the bulge actually shifts a few inches over time. Although the same side of the moon constantly faces Earth, because of the tilt and shape of the moon's orbit, the side facing Earth appears to wobble. From the moon's viewpoint, Earth doesn't sit motionless but moves around within a small patch of sky. The bulge responds to Earth's movements like a dance partner, following wherever the lead goes.

"If nothing changed on the moon -- if there were no lunar body tide or if its tide were completely static -- then every time scientists measured the surface height at a particular location, they would get the same value," said Mike Barker, a Sigma Space Corporation scientist based at Goddard and co-author of the new study, which is available online in Geophysical Research Letters.

A few studies of these subtle changes were conducted previously from Earth. But not until LRO and GRAIL did satellites provide enough resolution to see the lunar tide from orbit.

To search for the tide's signature, the scientists turned to data taken by LRO's Lunar Orbiter Laser Altimeter, or LOLA, which is mapping the height of features on the moon's surface. 

The team chose spots that the spacecraft has passed over more than once, each time approaching along a different flight path. More than 350,000 locations were selected, covering areas on the near and far sides of the moon.

The researchers precisely matched measurements taken at the same spot and calculated whether the height had risen or fallen from one satellite pass to the next; a change indicated a shift in the location of the bulge.

A crucial step in the process was to pinpoint exactly how far above the surface LRO was located for each measurement. To reconstruct the spacecraft's orbit with sufficient accuracy, the researchers needed the detailed map of the moon's gravity field provided by the GRAIL mission.

"This study provides a more direct measurement of the lunar body tide and much more comprehensive coverage than has been achieved before," said John Keller, LRO project scientist at Goddard.

The good news for lunar scientists is that the new results are consistent with earlier findings.

The estimated size of the tide confirmed the previous measurement of the bulge. The other value of great interest to researchers is the overall stiffness of the moon, known as the Love number h2, and this was also similar to prior results.

Having confirmation of the previous values -- with significantly smaller errors than before -- will make the lunar body tide a more useful piece of information for scientists.

"This research shows the power of bringing together the capabilities of two missions. The extraction of the tide from the LOLA data would have been impossible without the gravity model of the moon provided by the GRAIL mission," said David Smith, the principal investigator for LRO's LOLA instrument and the deputy principal investigator for the GRAIL mission. Smith is affiliated with Goddard and the Massachusetts Institute of Technology.

Source: nasa

Water in moon rocks provides clues and questions about lunar history

This shows secondary electron image of pits left by ion microprobe analyses of a heterogeneous apatite grain in Apollo sample 14321, 1047. Water has now been detected in apatite in many different lunar rock types. Credit: Katharine L. Robinson, University of Hawaii, HIGP
A recent review of hundreds of chemical analyses of Moon rocks indicates that the amount of water in the Moon's interior varies regionally -- revealing clues about how water originated and was redistributed in the Moon. These discoveries provide a new tool to unravel the processes involved in the formation of the Moon, how the lunar crust cooled, and its impact history.

This is not liquid water, but water trapped in volcanic glasses or chemically bound in mineral grains inside lunar rocks. Rocks originating from some areas in the lunar interior contain much more water than rocks from other places. The hydrogen isotopic composition of lunar water also varies from region to region, much more dramatically than in Earth.

The present consensus is that the Moon formed as the result of a giant impact of an approximately Mars-sized planetesimal with the proto-Earth. The water in the Moon is a tracer of the processes that operated in the hot, partly silicate gas, partly magma disk surrounding Earth after that impact.

The source of the Moon's water has important implications for determining the source of Earth's water, which is vital to life. There are two options: either, water was inherited by the Moon from Earth during the Moon-forming impact, or it was added to the Moon later by comets or asteroids. It might also be a combination of these two processes.

"Basically, whatever happened to the Moon also happened to the Earth," said Katharine Robinson, lead author of the study and Graduate Assistant at the University of Hawai'i -- Mānoa (UHM) School of Ocean and Earth Science and Technology.

Robinson and Researcher G. Jeffrey Taylor, both at the UHM Hawai'i Institute of Geophysics and Planetology, compiled water measurements from lunar samples performed by colleagues from around the world, as well as their own. Specifically, they measured hydrogen and its isotope, deuterium (hydrogen with an extra neutron in its nucleus) with ion microprobes, which use a focused beam of ions to sputter ions from a small rock sample into a mass spectrometer. The ratio of hydrogen to deuterium can indicate the source of the water or trace magmatic processes in the lunar interior.

When water was first discovered in lunar samples in 2008, it was very surprising because from the time Apollo astronauts brought lunar samples, scientists thought that the Moon contained virtually no water.

"This was consistent with the idea that blossomed during the Origin of the Moon conference in Kona in 1984 -- that the Moon formed by a giant impact with the still-growing Earth, leading to extensive loss of volatile chemicals. Our work is surprising because it shows that lunar formation and accretion were more complex than previously thought," said Robinson.

The study of water in the Moon is still quite new, and many rocks have not yet been studied for water. The HIGP researchers have a new set of Apollo samples from NASA that they will be studying in the next few months, looking for additional clues about the early life of Earth and the Moon.

Source: University of Hawaii ‑ SOEST

First broadband wireless connection ... to the moon: Record-shattering Earth-to-Moon uplink

The ground terminal, with the sun reflecting off of the solar windows of the uplink telescopes, is shown. Credit: Robert LaFon, NASA/GSFC

The ground terminal, with the sun reflecting off of the solar windows of the uplink telescopes, is shown. Credit: Robert LaFon, NASA/GSFC

If future generations were to live and work on the moon or on a distant asteroid, they would probably want a broadband connection to communicate with home bases back on Earth. They may even want to watch their favorite Earth-based TV show. That may now be possible thanks to a team of researchers from the Massachusetts Institute of Technology's (MIT) Lincoln Laboratory who, working with NASA last fall, demonstrated for the first time that a data communication technology exists that can provide space dwellers with the connectivity we all enjoy here on Earth, enabling large data transfers and even high-definition video streaming.

At CLEO: 2014, being held June 8-13 in San Jose, California, USA, the team will present new details and the first comprehensive overview of the on-orbit performance of their record-shattering laser-based communication uplink between the moon and Earth, which beat the previous record transmission speed last fall by a factor of 4,800. Earlier reports have stated what the team accomplished, but have not provided the details of the implementation.

"This will be the first time that we present both the implementation overview and how well it actually worked," says Mark Stevens of MIT Lincoln Laboratory. "The on-orbit performance was excellent and close to what we'd predicted, giving us confidence that we have a good understanding of the underlying physics," Stevens says.

The team made history last year when their Lunar Laser Communication Demonstration (LLCD) transmitted data over the 384,633 kilometers between the moon and Earth at a download rate of 622 megabits per second, faster than any radio frequency (RF) system. They also transmitted data from Earth to the moon at 19.44 megabits per second, a factor of 4,800 times faster than the best RF uplink ever used.

"Communicating at high data rates from Earth to the moon with laser beams is challenging because of the 400,000-kilometer distance spreading out the light beam," Stevens says. "It's doubly difficult going through the atmosphere, because turbulence can bend light -- causing rapid fading or dropouts of the signal at the receiver."

To outmaneuver problems with fading of the signal over such a distance, the demonstration uses several techniques to achieve error-free performance over a wide range of optically challenging atmospheric conditions in both darkness and bright sunlight. A ground terminal at White Sands, New Mexico, uses four separate telescopes to send the uplink signal to the moon. Each telescope is about 6 inches in diameter and fed by a laser transmitter that sends information coded as pulses of invisible infrared light. The total transmitter power is the sum of the four separate transmitters, which results in 40 watts of power.

The reason for the four telescopes is that each one transmits light through a different column of air that experiences different bending effects from the atmosphere, Stevens says. This increases the chance that at least one of the laser beams will interact with the receiver, which is mounted on a satellite orbiting the moon. This receiver uses a slightly narrower telescope to collect the light, which is then focused into an optical fiber similar to fibers used in terrestrial fiber optic networks.

From there, the signal in the fiber is amplified about 30,000 times. A photodetector converts the pulses of light into electrical pulses that are in turn converted into data bit patterns that carry the transmitted message. Of the 40-watt signals sent by the transmitter, less than a billionth of a watt is received at the satellite -- but that's still about 10 times the signal necessary to achieve error-free communication, Stevens says.

Their CLEO: 2014 presentation will also describe how the large margins in received signal level can allow the system to operate through partly transparent thin clouds in Earth's atmosphere, which the team views as a big bonus.

"We demonstrated tolerance to medium-size cloud attenuations, as well as large atmospheric-turbulence-induced signal power variations, or fading, allowing error-free performance even with very small signal margins," Stevens says.

While the LLCD design is directly relevant for near-Earth missions and those out to Lagrange points -- areas where the forces between rotating celestial bodies are balanced, making them a popular destination for satellites -- the team predicts that it's also extendable to deep-space missions to Mars and the outer planets.

Presentation SM4J.1, titled "Overview and On-orbit Performance of the Lunar Laser Communication Demonstration Uplink," will take place Monday, June 9.

Source: The Optical Society

NASA completes LADEE mission with planned impact on moon's surface

An artist's concept of NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft seen orbiting near the surface of the moon. Credit: NASA Ames/Dana Berry
Ground controllers at NASA's Ames Research Center in Moffett Field, Calif., have confirmed that NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft impacted the surface of the moon, as planned, between 9:30 and 10:22 p.m. PDT Thursday, April 17.

LADEE lacked fuel to maintain a long-term lunar orbit or continue science operations and was intentionally sent into the lunar surface. The spacecraft's orbit naturally decayed following the mission's final low-altitude science phase.

During impact, engineers believe the LADEE spacecraft, the size of a vending machine, broke apart, with most of the spacecraft's material heating up several hundred degrees -- or even vaporizing -- at the surface. Any material that remained is likely buried in shallow craters.

"At the time of impact, LADEE was traveling at a speed of 3,600 miles per hour -- about three times the speed of a high-powered rifle bullet," said Rick Elphic, LADEE project scientist at Ames. "There's nothing gentle about impact at these speeds -- it's just a question of whether LADEE made a localized craterlet on a hillside or scattered debris across a flat area. It will be interesting to see what kind of feature LADEE has created."

In early April, the spacecraft was commanded to carry out maneuvers that would lower its closest approach to the lunar surface. The new orbit brought LADEE to altitudes below one mile (two kilometers) above the lunar surface. This is lower than most commercial airliners fly above Earth, enabling scientists to gather unprecedented science measurements.

On April 11, LADEE performed a final maneuver to ensure a trajectory that caused the spacecraft to impact the far side of the moon, which is not in view of Earth or near any previous lunar mission landings. LADEE also survived the total lunar eclipse on April 14 to 15. This demonstrated the spacecraft's ability to endure low temperatures and a drain on batteries as it, and the moon, passed through Earth's deep shadow.

In the coming months, mission controllers will determine the exact time and location of LADEE's impact and work with the agency's Lunar Reconnaissance Orbiter (LRO) team to possibly capture an image of the impact site. Launched in June 2009, LRO provides data and detailed images of the lunar surface.

"It's bittersweet knowing we have received the final transmission from the LADEE spacecraft after spending years building it in-house at Ames, and then being in constant contact as it circled the moon for the last several months," said Butler Hine, LADEE project manager at Ames.

Launched in September 2013 from NASA's Wallops Flight Facility in Virginia, LADEE began orbiting the moon Oct. 6 and gathering science data Nov. 10. The spacecraft entered its science orbit around the moon's equator on Nov. 20, and in March 2014, LADEE extended its mission operations following a highly successful 100-day primary science phase.

LADEE also hosted NASA's first dedicated system for two-way communication using laser instead of radio waves. The Lunar Laser Communication Demonstration (LLCD) made history using a pulsed laser beam to transmit data over the 239,000 miles from the moon to the Earth at a record-breaking download rate of 622 megabits-per-second (Mbps). In addition, an error-free data upload rate of 20 Mbps was transmitted from the primary ground station in New Mexico to the Laser Communications Space Terminal aboard LADEE.

LADEE gathered detailed information about the structure and composition of the thin lunar atmosphere. In addition, scientists hope to use the data to address a long-standing question: Was lunar dust, electrically charged by sunlight, responsible for the pre-sunrise glow seen above the lunar horizon during several Apollo missions?

"LADEE was a mission of firsts, achieving yet another first by successfully flying more than 100 orbits at extremely low altitudes," said Joan Salute, LADEE program executive, at NASA Headquarters in Washington. "Although a risky decision, we're already seeing evidence that the risk was worth taking."

A thorough understanding of the characteristics of our nearest celestial neighbor will help researchers understand other bodies in the solar system, such as large asteroids, Mercury and the moons of outer planets.

NASA also included the public in the final chapter of the LADEE story. A "Take the Plunge" contest provided an opportunity for the public to guess the date and time of the spacecraft's impact via the internet. Thousands submitted predictions. NASA will provide winners a digital congratulatory certificate.

NASA's Science Mission Directorate in Washington funds the LADEE mission. Ames was responsible for spacecraft design, development, testing and mission operations, in addition to managing the overall mission. NASA's Goddard Space Flight Center in Greenbelt, Md., managed the science instruments, technology demonstration payload and science operations center, and provided mission support. Goddard also manages the LRO mission. 

Wallops was responsible for launch vehicle integration, launch services and operations. NASA's Marshall Space Flight Center in Huntsville, Ala., managed LADEE within the Lunar Quest Program Office.

Source: NASA

Planet Mercury a result of early hit-and-run collisions

New simulations show that Mercury and other unusually metal-rich objects in the solar system may be relics left behind by hit-and-run collisions in the early solar system. Credit: NASA/JPL/Caltech
Planet Mercury's unusual metal-rich composition has been a longstanding puzzle in planetary science. According to a study published online in Nature Geoscience July 6, Mercury and other unusually metal-rich objects in the solar system may be relics left behind by collisions in the early solar system that built the other planets.

The origin of planet Mercury has been a difficult question in planetary science because its composition is very different from that of the other terrestrial planets and the moon. This small, innermost planet has more than twice the fraction of metallic iron of any other terrestrial planet. Its iron core makes up about 65 percent of Mercury's total mass; Earth's core, by comparison, is just 32 percent of its mass.

How do we get Venus, Earth and Mars to be mostly "chondritic" (having a more-or-less Earth-like bulk composition) while Mercury is such an anomaly? For Arizona State University professor Erik Asphaug, understanding how such a planet accumulated from the dust, ice and gas in the early solar nebula is a key science question.

There have been a number of failed hypotheses for Mercury's formation. None of them until now has been able to explain how Mercury lost its mantle while retaining significant levels of volatiles (easily vaporized elements or compounds, such as water, lead and sulfur). Mercury has substantially more volatiles than the moon does, leading scientists to think its formation could have had nothing to do with a giant impact ripping off the mantle, which has been a common popular explanation.

To explain the mystery of Mercury's metal-rich composition, ASU's Asphaug and Andreas Reufer of the University of Bern have developed a new hypothesis involving hit-and-run collisions, where proto-Mercury loses half its mantle in a grazing blow into a larger planet (proto-Venus or proto-Earth). One or more hit-and-run collisions could have potentially stripped away proto-Mercury's mantle without an intense shock, leaving behind a mostly-iron body and satisfying a number of the major puzzles of planetary formation -- including the retention of volatiles -- in a process that can also explain the absence of shock features in many of the mantle-stripped meteorites.

Asphaug and Reufer have developed a statistical scenario for how planets merge and grow based on the common notion that Mars and Mercury are the last two relics of an original population of maybe 20 bodies that mostly accreted to form Venus and Earth. These last two planets lucked out.

"How did they luck out? Mars, by missing out on most of the action -- not colliding into any larger body since its formation -- and Mercury, by hitting the larger planets in a glancing blow each time, failing to accrete," explains Asphaug, who is a professor in ASU's School of Earth and Space Exploration. "It's like landing heads two or three times in a row -- lucky, but not crazy lucky. In fact, about one in 10 lucky."

By and large, dynamical modelers have rejected the notion that hit-and-run survivors can be important because they will eventually be accreted by the same larger body they originally ran into. Their argument is that it is very unlikely for a hit-and-run relic to survive this final accretion onto the target body.

"The surprising result we have shown is that hit-and-run relics not only can exist in rare cases, but that survivors of repeated hit-and-run incidents can dominate the surviving population. That is, the average unaccreted body will have been subject to more than one hit-and-run collision," explains Asphaug. "We propose one or two of these hit-and-run collisions can explain Mercury's massive metallic core and very thin rocky mantle."

According to Reufer, who performed the computer modeling for the study, "Giant collisions put the final touches on our planets. Only recently have we started to understand how profound and deep those final touches can be.

"The implication of the dynamical scenario explains, at long last, where the 'missing mantle' of Mercury is -- it's on Venus or the Earth, the hit-and-run targets that won the sweep-up," says Asphaug.

Disrupted formation

The duo's modelling has revealed a fundamental problem with an idea implicit to modern theories of planet formation: that protoplanets grow efficiently into ever larger bodies, merging whenever they collide.

Instead, disruption occurs even while the protoplanets are growing.

"Protoplanets do merge and grow, overall, because otherwise there would not be planets," says Asphaug. "But planet formation is actually a very messy, very lossy process, and when you take that into account, it's not at all surprising that the 'scraps,' like Mercury and Mars, and the asteroids are so diverse."

These simulations are of great relevance to meteoritics, which, just like Mercury's missing mantle, faces questions like: Where's all the stripped mantle rock that got removed from these early core-forming planetesimals? Where are the olivine meteorites that correspond to the dozens or hundreds of iron meteorite parent bodies?

"It's not missing -- it's inside the mantles of the planets, ultimately," explains Asphaug. "It got gobbled up by the larger growing planetary bodies in every hit-and-run series of encounters."

Because you can't eat just one: Star will swallow two planets

In this artist's conception, the doomed world Kepler-56b is being tidally shredded and consumed by its aging host star. New research shows that Kepler-56b will be engulfed by its star in about 130 million years, while its sibling Kepler-56c will be swallowed in 155 million years. This is the first time that two known exoplanets in a single system have a predicted "time of death." Credit: David A. Aguilar (CfA)
Two worlds orbiting a distant star are about to become a snack of cosmic proportions. Astronomers announced today that the planets Kepler-56b and Kepler-56c will be swallowed by their star in a short time by astronomical standards. Their ends will come in 130 million and 155 million years, respectively.

"As far as we know, this is the first time two known exoplanets in a single system have a predicted 'time of death,'" says lead author Gongjie Li of the Harvard-Smithsonian Center for Astrophysics (CfA).

She presented her research today at a meeting of the American Astronomical Society.
The Kepler-56 system provides a glimpse into the future of our solar system. In about five billion years our Sun will become a red giant star, swelling to immense proportions and engulfing Mercury and Venus.

The star Kepler-56 is becoming a red giant star as well. It already has ballooned out to four times the Sun's size. As it ages, it will continue to expand outward. Not only will the star grow larger, but its tides will get stronger, dragging its planets inward to their eventual doom.

Kepler-56b orbits its host star once every 10.5 days, while Kepler-56c orbits every 21.4 days. Both of them are much closer to their star than Mercury is to the Sun. As a result, they will meet their fate much faster. Li and her collaborators calculated the evolution of both the star's size (using the publicly available MESA code) and the planets' orbits to predict when the planets will be destroyed.

Even before they vanish, the two planets will be subjected to immense heating from the steadily growing star. Their atmospheres will begin to boil off, and the planets themselves will be stretched into egg shapes by stellar tides.

The only survivor in the system will be Kepler-56d, a gas giant planet circling in a 3.3-Earth-year orbit. It will watch from a safe distance as its two sibling worlds meet their demise.

The Kepler-56 planetary system also is notable for being the first "tilted" multiplanet system to be discovered. The orbits of the inner two planets are tipped significantly from the star's equator. This was unexpected since planets form from the same disk of gas and dust as the star, so they should orbit in nearly the same plane as the star's equator (as do the planets in our solar system).

The team was able to better constrain the tilt of these planets, compared to earlier work. 

They found that the most probable tilt was either 37 or 131 degrees.

Li and her colleagues also investigated the inclination of the outer planet and determined that its orbit is likely to be tilted relative to the star as well. Future observations should help astronomers to characterize this system, and to explain how it became so skewed.

Ancient volcanic explosions shed light on Mercury's origins

Measuring geological time: Two pyroclastic vents on the floor of Mercury’s Kipling crater, top, would likely not have survived the impact; they are more recent. The false color image of the same spot, bottom, marks pyroclastic material as brownish red. Credit: Image courtesy of Brown University
The surface of Mercury crackled with volcanic explosions for extended periods of the planet's history, according to a new analysis led by researchers at Brown University. The findings are surprising considering Mercury wasn't supposed to have explosive volcanism in the first place, and they could have implications for understanding how Mercury formed.

On Earth, volcanic explosions like the one that tore the lid off Mount St. Helens happen because our planet's interior is rich in volatiles -- water, carbon dioxide and other compounds with relatively low boiling points. As lava rises from the depths toward the surface, volatiles dissolved within it change phase from liquid to gas, expanding in the process. The pressure of that expansion can cause the crust above to burst like an overinflated balloon.

Mercury, however, was long thought to be bone dry when it comes to volatiles, and without volatiles there can't be explosive volcanism. But that view started to change in 2008, after NASA's MESSENGER spacecraft made its first flybys of Mercury. Those glimpses of the surface revealed deposits of pyroclastic ash -- the telltale signs of volcanic explosions -- peppering the planet's surface. It was a clue that at some point in its history Mercury's interior wasn't as bereft of volatiles as had been assumed.

What wasn't clear from those initial flybys was the timeframe over which those explosions occurred. Did Mercury's volatiles escape in a flurry of explosions early in the planet's history or has Mercury held on to its volatiles over a much longer period?

This latest work, available in online early view at the Journal of Geophysical Research: Planets, suggests the latter.

A team of researchers led by Tim Goudge, a graduate student in the Department of Geological Sciences at Brown, looked at 51 pyroclastic sites distributed across Mercury's surface. They used data from MESSENGER's cameras and spectrometers collected after the spacecraft entered orbit around Mercury in 2011. Compared with the data from the initial flybys, the orbital data provided a much more detailed view of the deposits and the source vents that spat them out.

The new MESSENGER data revealed that some of the vents have eroded to a much greater degree than others -- an indicator that the explosions didn't happen all at the same time.

"If [the explosions] happened over a brief period and then stopped, you'd expect all the vents to be degraded by approximately the same amount," Goudge said. "We don't see that; we see different degradation states. So the eruptions appear to have been taking place over an appreciable period of Mercury's history."

But just where that period of explosiveness fits into Mercury's geological history was another matter. To help figure that out, Goudge and his colleagues took advantage of the fact that most of the sites are located within impact craters. The age of each crater offers an important constraint in the age of the pyroclastic deposit inside it: The deposit has to be younger than its host crater. If the deposit had come first, it would have been obliterated by the impact that formed the crater. So the age of the crater provides an upper limit on how old the pyroclastic deposit can be.

As it happens, there's an established method for dating craters on Mercury. The rims and walls of craters become eroded and degraded over time, and the extent of that degradation can be used to get an approximate age of the crater.

Using that method, Goudge and his colleagues showed that some pyroclastic deposits are found in relatively young (geologically speaking) craters dated to between 3.5 and 1 billion years old. The finding helps rule out the possibility that all the pyroclastic activity happened shortly after Mercury's formation around 4.5 billion years ago.

"These ages tell us that Mercury didn't degas all of its volatiles very early," Goudge said. "It kept some of its volatiles around to more recent geological times."

The extent to which Mercury's volatiles stuck around could shed light on how the planet formed. Despite being the smallest planet in the solar system (since Pluto was demoted from the ranks of the planets), Mercury has an abnormally large iron core. That finding led to speculation the perhaps Mercury was once much larger, but had its outer layers removed -- either fried away by the nearby Sun or perhaps blasted away be a huge impact early in the planet's history. Either of those events, however, would likely have heated the outer parts of Mercury enough to remove volatiles very early in its history.

In light of this study and other data collected by MESSENGER showing traces of the volatiles sulfur, potassium, and sodium on Mercury's surface, both those scenarios seem increasingly unlikely.

"Together with other results that suggest the Moon may have had more volatiles than previously thought, this research is revolutionizing our thinking about the early history of the planets and satellites," said Jim Head, professor of geological sciences and a MESSENGER mission co-investigator. "These results define specific targets for future exploration of Mercury by orbiting and landed spacecraft."

Source: Brown University

Where do astronauts go when they need 'to go?'

NASA researchers sought to design a way to contain urine in the inevitable event that future astronauts would need 'to go' while wearing their spacesuits.
Alan Shepard became the first American to fly in space on May 5, 1961. Although NASA engineers had put considerable planning into his mission, dubbed Freedom 7, noticeably missing from this extensive preparation was a way for him to urinate in his spacesuit. 

During a lengthy launch delay, the inevitable happened, and Shepard's urine short-circuited his electronic biosensors. In less than a year, engineers had remedied this seeming oversight for John Glenn's Mercury orbital flight. The system developed for Glenn stood the test of time, remaining in use until the early days of the Space Shuttle program.

In a new article, Hunter Hollins of the National Air and Space Museum reviews the history of urine collection in space and the considerations necessary to accommodate this basic physiological function. That first successful urine collection device, used in 1962, has been on display at the National Air and Space Museum since 1976.

The new article, titled "Forgotten Hardware: How to Urinate in a Spacesuit," appears in the June 2013 edition of Advances in Physiology Education, a journal published by the American Physiological Society

No Need "To Go?"

Hollins writes that though the general public was interested in how astronauts would tackle taking care of this basic need in space (a letter stored in NASA's Historical Reference Collection from a Pennsylvania schoolgirl questioned where the first man in space would use the toilet), NASA's scientists and technicians seemed to ignored the problem before Shepard's mission. Combined with a lack of funding and little crosstalk between the organizations that would end up comprising NASA, scientists in the organization also assumed that the first astronauts would be able to "hold it" during their very short missions.

However, though Shepard's spaceflight was scheduled to last only 15 minutes, he spent eight hours in his spacesuit due to launch delays. During a four-hour stint on the launch pad, he relieved himself in the suit, damaging the electronic medical data sensors attached to his body.

After this understandable event, NASA researchers sought to design a way to contain urine in the inevitable event that future astronauts would need to go while wearing their spacesuits.

New Device a Relief for Astronauts

Working around the spacesuit itself was one barrier to successful urine collection. The pressure suits worn by astronauts help keep their occupants alive during spaceflight by ensuring that pressures inside stay within a healthy physiological range. However, the bulky, uncomfortable suits left little room for devices to capture urine.

The first iteration of urine collection devices proposed for space were in-dwelling catheters, a tube threaded through the penis to collect urine continuously from the bladder. However, such catheters are extremely uncomfortable and greatly increase the risk of infection.

After Gus Grissom's Mercury-Redstone 4 mission followed Shepard's in 1961 -- in which Grissom urinated between two pairs of rubber pants -- NASA researchers set about developing a more suitable urine collection device. They ended up basing theirs on the simple personal urinals already available at the time for people with medical problems, such as impaired bladder control, or those without access to public urinals, such as police officers on a long shift.

In the end, the resulting device resembled a condom made out of more durable materials and open on one end, with a tube connected to a storage container. On Glenn's Mercury-Atlas 6 mission, he voided a full bladder into the new device, confirming its utility.

Tweaks Still Necessary

Astronauts regularly used this type of device with minimal modifications until the early days of the Space Shuttle program, Hollins writes. However, those and modern urine collection devices still aren't perfect. Hollins notes that in a survey done in 2010, the majority of U.S. Air Force pilots flying high altitude spy planes reported problems with the urine collection devices they wore, including poor fit, leaking, and skin damage from extended contact with urine.

"It is the job of the engineer/physiologist to ensure that the man-machine interface promotes the health and safety of the human body," Hollins says.

Mercury may have harbored an ancient magma ocean: Massive lava flows may have given rise to two distinct rock types

The First Solar Day. After its first Mercury solar day (176 Earth days) in orbit, MESSENGER has nearly completed two of its main global imaging campaigns: a monochrome map at 250 m/pixel and an eight-color, 1-km/pixel color map. Apart from small gaps, which will be filled in during the next solar day, these global maps now provide uniform lighting conditions ideal for assessing the form of Mercury’s surface features as well as the color and compositional variations across the planet. The orthographic views seen here, centered at 75° E longitude, are each mosaics of thousands of individual images. At right, images taken through the wide-angle camera filters at 1000, 750, and 430 nm wavelength are displayed in red, green, and blue, respectively.
By analyzing Mercury's rocky surface, scientists have been able to partially reconstruct the planet's history over billions of years. Now, drawing upon the chemical composition of rock features on the planet's surface, scientists at MIT have proposed that Mercury may have harbored a large, roiling ocean of magma very early in its history, shortly after its formation about 4.5 billion years ago.

The scientists analyzed data gathered by MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging), a NASA probe that has orbited the planet since March 2011. Later that year, a group of scientists analyzed X-ray fluorescence data from the probe, and identified two distinct compositions of rocks on the planet's surface. The discovery unearthed a planetary puzzle: What geological processes could have given rise to such distinct surface compositions?

To answer that question, the MIT team used the compositional data to recreate the two rock types in the lab, and subjected each synthetic rock to high temperatures and pressures to simulate various geological processes. From their experiments, the scientists came up with only one phenomenon to explain the two compositions: a vast magma ocean that created two different layers of crystals, solidified, then eventually remelted into magma that then erupted onto Mercury's surface.

"The thing that's really amazing on Mercury is, this didn't happen yesterday," says Timothy Grove, a professor of geology at MIT. "The crust is probably more than 4 billion years old, so this magma ocean is a really ancient feature."

Grove, along with postdoc Bernard Charlier and Maria Zuber, the E.A. Griswold Professor of Geophysics and Planetary Science and now MIT's vice president for research, published the results in the journal Earth and Planetary Science Letters.

Making Mercury's rocks

MESSENGER entered Mercury's orbit during a period of intense solar-flare activity; as the solar system's innermost planet, Mercury takes the brunt of the sun's rays. The rocks on its surface reflect an intense fluorescent spectrum that scientists can measure with X-ray spectrometers to determine the chemical composition of surface materials.

As the spacecraft orbited the planet, an onboard X-ray spectrometer measured the X-ray radiation generated by Mercury's surface. In September 2011, the MESSENGER science team parsed these energy spectra into peaks, with each peak signifying a certain chemical element in the rocks. From this research, the group identified two main rock types on Mercury's surface.

Grove, Charlier and Zuber set out to find an explanation for the differences in rock compositions. The team translated the chemical element ratios into the corresponding building blocks that make up rocks, such as magnesium oxide, silicon dioxide and aluminum oxide. The researchers then consulted what Grove refers to as a "pantry of oxides" -- finely powdered chemicals -- to recreate the rocks in the lab.

"We just mix these together in the right proportions and we've got a synthetic copy of what's on the surface of Mercury," Grove says.

Crystals in the melt

The researchers then melted the samples of synthetic rock in a furnace, cranking the heat up and down to simulate geological processes that would cause crystals -- and eventually rocks -- to form in the melt.

"You can tell what would happen as the melt cools and crystals form and change the chemical composition of the remaining melted rock," Grove says. "The leftover melt changes composition."

After cooling the samples, the researchers picked out tiny crystals and melt pockets for analysis. The scientists initially looked for scenarios in which both original rock compositions might be related. For example, both rock types may have come from one region: One rock may have crystallized more than the other, creating distinct but related compositions.

But Grove found the two compositions were too different to have originated from the same region, and instead may have come from two separate regions within the planet. The easiest explanation for what created these distinct regions, Grove says, is a large magma ocean, which over time likely formed different compositions of crystals as it solidified. This molten ocean eventually remelted, spewing lava onto the surface of the planet in massive volcanic eruptions.

Grove estimates that this magma ocean likely existed very early in Mercury's existence -- possibly within the first 1 million to 10 million years -- and may have been created from the violent processes that formed the planet. As the solar nebula condensed, bits and pieces collided into larger chunks to form tiny, and then larger, planets. That process of colliding and accreting may produce enough energy to completely melt the planet -- a scenario that 
would make an early magma ocean very feasible.

"The acquisition of data by spacecraft must be combined with laboratory experiments," Charlier says. "Although these data are valuable by themselves, experimental studies on these compositions enable scientists to reach the next level in the interpretation of planetary evolution."

Larry Nittler, a staff scientist in the Department of Terrestrial Magnetism at the Carnegie Institution of Washington, led the research team that originally identified the two rock compositions from MESSENGER data. He says the MIT team's experimental results propose a very likely early history for Mercury.

"We're gradually filling in more blanks, and the story may well change, but this work sets up a framework for thinking about new data," says Nittler, who was not involved in the study. 

"It's a very important first step toward going from exciting data to real understanding."

This research was supported by a NASA cosmochemistry grant, a Marie Curie International Outgoing Fellowship, and the NASA MESSENGER mission.

NASA's MAVEN Mars orbiter mission identifies links in chain leading to atmospheric loss

NASA’s MAVEN mission is observing the upper atmosphere of Mars to help understand climate change on the planet. MAVEN entered its science phase on Nov. 16, 2014. Credit: NASA's Goddard Space Flight Center
Early discoveries by NASA's newest Mars orbiter are starting to reveal key features about the loss of the planet's atmosphere to space over time.

The findings are among the first returns from NASA's Mars Atmosphere and Volatile Evolution (MAVEN) mission, which entered its science phase on Nov. 16. The observations reveal a new process by which the solar wind can penetrate deep into a planetary atmosphere. They include the first comprehensive measurements of the composition of Mars' upper atmosphere and electrically charged ionosphere. The results also offer an unprecedented view of ions as they gain the energy that will lead to their to escape from the atmosphere.

"We are beginning to see the links in a chain that begins with solar-driven processes acting on gas in the upper atmosphere and leads to atmospheric loss," said Bruce Jakosky, MAVEN principal investigator with the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder. "Over the course of the full mission, we'll be able to fill in this picture and really understand the processes by which the atmosphere changed over time."

On each orbit around Mars, MAVEN dips into the ionosphere -- the layer of ions and electrons extending from about 75 to 300 miles above the surface. This layer serves as a kind of shield around the planet, deflecting the solar wind, an intense stream of hot, high-energy particles from the sun.

Scientists have long thought that measurements of the solar wind could be made only before these particles hit the invisible boundary of the ionosphere. MAVEN's Solar Wind Ion Analyzer, however, has discovered a stream of solar-wind particles that are not deflected but penetrate deep into Mars' upper atmosphere and ionosphere.

Interactions in the upper atmosphere appear to transform this stream of ions into a neutral form that can penetrate to surprisingly low altitudes. Deep in the ionosphere, the stream emerges, almost Houdini-like, in ion form again. The reappearance of these ions, which retain characteristics of the pristine solar wind, provides a new way to track the properties of the solar wind and may make it easier to link drivers of atmospheric loss directly to activity in the upper atmosphere and ionosphere.

MAVEN's Neutral Gas and Ion Mass Spectrometer is exploring the nature of the reservoir from which gases are escaping by conducting the first comprehensive analysis of the composition of the upper atmosphere and ionosphere. These studies will help researchers make connections between the lower atmosphere, which controls climate, and the upper atmosphere, where the loss is occurring.

The instrument has measured the abundances of many gases in ion and neutral forms, revealing well-defined structure in the upper atmosphere and ionosphere, in contrast to the lower atmosphere, where gases are well-mixed. The variations in these abundances over time will provide new insights into the physics and chemistry of this region and have already provided evidence of significant upper-atmospheric "weather" that has not been measured in detail before.

New insight into how gases leave the atmosphere is being provided by the spacecraft's Suprathermal and Thermal Ion Composition (STATIC) instrument. Within hours after being turned on at Mars, STATIC detected the "polar plume" of ions escaping from Mars. This measurement is important in determining the rate of atmospheric loss.

As the satellite dips down into the atmosphere, STATIC identifies the cold ionosphere at closest approach and subsequently measures the heating of this charged gas to escape velocities as MAVEN rises in altitude. The energized ions ultimately break free of the planet's gravity as they move along a plume that extends behind Mars.

The MAVEN spacecraft and its instruments have the full technical capability proposed in 2007 and are on track to carry out the primary science mission. The MAVEN team delivered the spacecraft to Mars on schedule, launching on the very day in 2013 projected by the team 5 years earlier. MAVEN was also delivered well under the confirmed budget established by NASA in 2010.

The team's success can be attributed to a focused science mission that matched the available funding and diligent management of resources. There were also minimal changes in requirements on the hardware or science capabilities that could have driven costs. It also reflects good coordination between the principal investigator; the project management at NASA's Goddard Space Flight Center; the Mars Program Office at NASA's Jet Propulsion Laboratory in Pasadena, California; and the Mars Exploration Program at NASA Headquarters.

The entire project team contributed to MAVEN's success to date, including the management team, the spacecraft and science-instrument institutions, and the launch-services provider.

"The MAVEN spacecraft and its instruments are fully operational and well on their way to carrying out the primary science mission," said Jim Green, director of NASA's Planetary Science Division at NASA Headquarters in Washington. "The management team's outstanding work enabled the project to be delivered on schedule and under budget."

NASA Goddard instrument makes first detection of organic matter on Mars

MSL Curiosity rover at "John Klein" drill site. This self-portrait of NASA's Mars rover Curiosity combines dozens of exposures taken by the rover's Mars Hand Lens Imager on Feb. 3, 2013 plus three exposures taken May 10, 2013 to show two holes (in lower left quadrant) where Curiosity used its drill on the rock target "John Klein". Credit: NASA/JPL-Caltech/MSSS

The team responsible for the Sample Analysis at Mars (SAM) instrument suite on NASA's Curiosity rover has made the first definitive detection of organic molecules at Mars. Organic molecules are the building blocks of all known forms of terrestrial life, and consist of a wide variety of molecules made primarily of carbon, hydrogen, and oxygen atoms. However, organic molecules can also be made by chemical reactions that don't involve life, and there is not enough evidence to tell if the matter found by the team came from ancient Martian life or from a non-biological process. Examples of non-biological sources include chemical reactions in water at ancient Martian hot springs or delivery of organic material to Mars by interplanetary dust or fragments of asteroids and comets.

The surface of Mars is currently inhospitable to life as we know it, but there is evidence that the Red Planet once had a climate that could have supported life billions of years ago. For example, features resembling dry riverbeds and minerals that only form in the presence of liquid water have been discovered on the Martian surface. The Curiosity rover with its suite of instruments including SAM was sent to Mars in 2011 to discover more about the ancient habitable Martian environment by examining clues in the chemistry of rocks and the atmosphere.

The organic molecules found by the team were in a drilled sample of the Sheepbed mudstone in Gale crater, the landing site for the Curiosity rover. Scientists think the crater was once the site of a lake billions of years ago, and rocks like mudstone formed from sediment in the lake. Moreover, this mudstone was found to contain 20 percent smectite clays. On Earth, such clays are known to provide high surface area and optimal interlayer sites for the concentration and preservation of organic compounds when rapidly deposited under reducing chemical conditions.

While the team can't conclude that there was life at Gale crater, the discovery shows that the ancient environment offered a supply of reduced organic molecules for use as building blocks for life and an energy source for life. Curiosity's earlier analysis of this same mudstone revealed that the environment offered water and chemical elements essential for life and a different chemical energy source.

"We think life began on Earth around 3.8 billion years ago, and our result shows that places on Mars had the same conditions at that time -- liquid water, a warm environment, and organic matter," said Caroline Freissinet of NASA's Goddard Space Flight Center in Greenbelt, Maryland. "So if life emerged on Earth in these conditions, why not on Mars as well?" Freissinet is lead author of a paper on this research submitted to the Journal of Geophysical Research-Planets.

The organic molecules found by the team also have chlorine atoms, and include chlorobenzene and several dichloroalkanes, such as dichloroethane, dichloropropane and dichlorobutane. Chlorobenzene is the most abundant with concentrations between 150 and 300 parts-per-billion. Chlorobenzene is not a naturally occurring compound on Earth. It is used in the manufacturing process for pesticides (insecticide DDT), herbicides, adhesives, paints and rubber. Dichloropropane is used as an industrial solvent to make paint strippers, varnishes and furniture finish removers, and is classified as a carcinogen.

It's possible that these chlorine-containing organic molecules were present as such in the mudstone. However, according to the team, it's more likely that a different suite of precursor organic molecules was in the mudstone, and that the chlorinated organics formed from reactions inside the SAM instrument as the sample was heated for analysis. Perchlorates (a chlorine atom bound to four oxygen atoms) are abundant on the surface of Mars. It's possible that as the sample was heated, chlorine from perchlorate combined with fragments from precursor organic molecules in the mudstone to produce the chlorinated organic molecules detected by SAM.

In 1976, the Gas Chromatograph Mass Spectrometer instrument on NASA's Viking landers detected two simple chlorinated hydrocarbons after heating Martian soils for analysis (chloromethane and dichloromethane). However they were not able to rule out that the compounds were derived from the instrument itself, according to the team. While sources within the SAM instrument also produce chlorinated hydrocarbons, they don't make more than 22 parts-per-billion of chlorobenzene, far below the amounts detected in the mudstone sample, giving the team confidence that organic molecules really are present on Mars.
The SAM instrument suite was built at NASA Goddard with significant elements provided by industry, university, and national and international NASA partners.

For this analysis, the Curiosity rover sample acquisition system drilled into a mudstone and filtered fine particles of it through a sieve, then delivered a portion of the sample to the SAM laboratory. SAM detected the compounds using its Evolved Gas Analysis (EGA) mode by heating the sample up to about 875 degrees Celsius (around 1,600 degrees Fahrenheit) and then monitoring the volatiles released from the sample using a quadrupole mass spectrometer, which identifies molecules by their mass using electric fields. SAM also detected and identified the compounds using its Gas Chromatograph Mass Spectrometer (GCMS) mode. In this mode, volatiles are separated by the amount of time they take to travel through a narrow tube (gas chromatography -- certain molecules interact with the sides of the tube more readily and thus travel more slowly) and then identified by their signature mass fragments in the mass spectrometer.

The first evidence for elevated levels of chlorobenzene and dichloroalkanes released from the mudstone was obtained on Curiosity Sol 290 (May 30, 2013) with the third analysis of the Cumberland sample at Sheepbed. The team spent over a year carefully analyzing the result, including conducting laboratory experiments with instruments and methods similar to SAM, to be sure that SAM could not be producing the amount of organic material detected.

"The search for organics on Mars has been extremely challenging for the team," said Daniel Glavin of NASA Goddard, a co-author on the paper. "First, we need to identify environments in Gale crater that would have enabled the concentration of organics in sediments. Then they need to survive the conversion of sediment to rock, where pore fluids and dissolved substances may oxidize and destroy organics. Organics can then be destroyed during exposure of rocks at the surface of Mars to intense ionizing radiation and oxidants. Finally, to identify any organic compounds that have survived, we have to deal with oxychlorine compounds and possibly other strong oxidants in the sample which will react with and combust organic compounds to carbon dioxide and chlorinated hydrocarbons when the samples are heated by SAM."

As part of Curiosity's plan for exploration, an important strategic goal was to sample rocks that represent different combinations of the variables thought to control organic preservation. "The SAM and Mars Science Laboratory teams have worked very hard to achieve this result," said John Grotzinger of Caltech, Mars Science Laboratory's Project Scientist. "Only by drilling additional rock samples in different locations, and representing different geologic histories were we able to tease out this result. At the time we first saw evidence of these organic molecules in the Cumberland sample it was uncertain if they were derived from Mars, however, additional drilling has not produced the same compounds as might be predicted for contamination, indicating that the carbon in the detected organic molecules is very likely of Martian origin."

Source: nasa
Environment Now
Technology+Physics
Health + Medicine
Plants + Animals
SPACE + TIME
Science + Society

 
BREAKING NEWS