-->
LATEST HEADLINES
66th REPUBLIC DAY WISHES TO ALL INDIANSZizix Tutorials
LATEST POSTS TIME OF NOW

Magnetic fields frozen into meteorite grains tell a shocking tale of solar system birth

Magnetic field lines (green) weave through the cloud of dusty gas surrounding the newborn Sun. In the foreground are asteroids and chondrules, the building blocks of chondritic meteorites. While solar magnetic fields dominate the region near the Sun, out where the asteroids orbit, chondrules preserve a record of varying local magnetic fields. Credit: Science
The most accurate laboratory measurements yet made of magnetic fields trapped in grains within a primitive meteorite are providing important clues to how the early solar system evolved. The measurements point to shock waves traveling through the cloud of dusty gas around the newborn Sun as a major factor in solar system formation.

The results appear in a paper published Nov. 13 in the journal Science. The lead author is graduate student Roger Fu of MIT, working under Benjamin Weiss; Steve Desch of Arizona State University's School of Earth and Space Exploration is a co-author of the paper.

"The measurements made by Fu and Weiss are astounding and unprecedented," says Desch. 
"Not only have they measured tiny magnetic fields thousands of times weaker than a compass feels, they have mapped the magnetic fields' variation recorded by the meteorite, millimeter by millimeter."

Construction debris
It may seem all but impossible to determine how the solar system formed, given it happened about 4.5 billion years ago. But making the solar system was a messy process, leaving lots of construction debris behind for scientists to study.

Among the most useful pieces of debris are the oldest, most primitive and least altered type of meteorites, called the chondrites (KON-drites). Chondrite meteorites are pieces of asteroids, broken off by collisions, that have remained relatively unmodified since they formed at the birth of the solar system. They are built mostly of small stony grains, called chondrules, barely a millimeter in diameter.

Chondrules themselves formed through quick melting events in the dusty gas cloud -- the solar nebula -- that surrounded the young sun. Patches of the solar nebula must have been heated above the melting point of rock for hours to days. Dustballs caught in these events made droplets of molten rock, which then cooled and crystallized into chondrules.

Tiny magnets
As chondrules cooled, iron-bearing minerals within them became magnetized like bits on a hard drive by the local magnetic field in the gas. These magnetic fields are preserved in the chondrules even down to the present day.

The chondrule grains whose magnetic fields were mapped in the new study came from a meteorite named Semarkona, after the place in India where it fell in 1940. It weighed 691 grams, or about a pound and a half.
The scientists focused specifically on the embedded magnetic fields captured by "dusty" olivine grains that contain abundant iron-bearing minerals. These had a magnetic field of about 54 microtesla, similar to the magnetic field at Earth's surface, which ranges from 25 to 65 microtesla.
Coincidentally, many previous measurements of meteorites also implied similar field strengths. But it is now understood that those measurements detected magnetic minerals contaminated by Earth's magnetic field, or even from hand magnets used by meteorite collectors.

"The new experiments," Desch says, "probe magnetic minerals in chondrules never measured before. They also show that each chondrule is magnetized like a little bar magnet, but with 'north' pointing in random directions."

This shows, he says, they became magnetized before they were built into the meteorite, and not while sitting on Earth's surface.

Shocks and more shocks
"My modeling for the heating events shows that shock waves passing through the solar nebula is what melted most chondrules," Desch explains. Depending on the strength and size of the shock wave, the background magnetic field could be amplified by up to 30 times.
He says, "Given the measured magnetic field strength of about 54 microtesla, this shows the background field in the nebula was probably in the range of 5 to 50 microtesla."

There are other ideas for how chondrules might have formed, some involving magnetic flares above the solar nebula, or passage through the sun's magnetic field. But those mechanisms require stronger magnetic fields than what is measured in the Semarkona samples.

This reinforces the idea that shocks melted the chondrules in the solar nebula at about the location of today's asteroid belt, which lies some two to four times farther from the sun than Earth now orbits.

Desch says, "This is the first really accurate and reliable measurement of the magnetic field in the gas from which our planets formed."

Source: Arizona State University

Kilauea, 1790 and today

The Island of Hawai'i, USA.
Scores of people were killed by an explosive eruption of Kīlauea Volcano, Hawai'i, in 1790. Research presented in GSA Bulletin by D.A. Swanson of the Hawaiian Volcano Observatory and colleagues suggests that most of the fatalities were caused by hot, rapidly moving surges of volcanic debris and steam that engulfed the victims. Deposits of such surges occur on the surface on the west summit area and cover an ash bed indented with human footprints.

The footprints, made by warriors and their families, appear along a major trail in use at the time. Today, the area is one of the most visited parts of Hawai'i Volcanoes National Park.
The explosive eruption resulted from the violent interaction of groundwater with hot rocks. Such explosive eruptions have happened frequently in Kīlauea's past and will probably occur in the future when the caldera collapses down to the water table, some 600 m (2000 ft) below the summit of the volcano.
The 1790 eruption of Kīlauea was explosive, and its major impacts were in the summit area of the volcano. The eruption taking place now at Kīlauea is effusive, says Swanson, producing a flow of lava that erupts without explosion. This flow is erupting from a site named Pu'u 'Ō'ō on the east rift zone, far from the summit area, and lava has to flow many kilometers (several miles) before reaching inhabited areas.
Explosive eruptions are very hazardous; the 1790 fatalities bear witness to this fact. Lava flows are not very hazardous to life but can be exceedingly destructive to property. Explosive eruptions are brief but terrifying. Lava flows often last for months or more and are captivating to the viewer. Kīlauea has both types of eruptions, but not at the same time.

Violent explosive eruptions from the summit of Kīlauea are geologically common. They are generally clustered into periods lasting a few centuries. It has been about 200 years since the most recent major explosion, which culminated about 300 years of frequent explosive eruptions. In the past 200 years, Kīlauea has produced many lava flows similar to the present one; small explosions took place in 1924 and, on an even smaller scale, during the past 6 years.

The general public is unaware of Kīlauea's explosive nature, because the volcano has erupted mainly lava flows in recent times. Kīlauea will almost certainly become explosive at some future time, producing conditions similar to those of 1790. However, according to Swanson, there is no reason to think that a period of violent eruptions will resume any time soon. The public can probably expect more lava flows in the near future, such as those of the past three decades from Pu'u 'Ō'ō.

Source: Geological Society of America

Protect the world's deltas, experts urge

The Atchafalaya River delta meets the Gulf of Mexico. The view is upriver to the northwest. Credit: Photo courtesy A. Belala/U.S. Army Corps of Engineers
Extensive areas of the world's deltas -- which accommodate major cities such as Shanghai, Dhaka and Bangkok -- will be drowned in the next century by rising sea levels, according to a Comment piece in this week's Nature. In the article, Dr. Liviu Giosan, a geologist with the Woods Hole Oceanographic Institution (WHOI), and colleagues call for maintenance efforts to be started now to avert the loss of vast expanses of coastline, and the consequent losses of ecological services, economic and social crises, and large-scale migrations.

The authors state the problems start upstream: deltas are built from sediments deposited at the mouths of rivers, but dams and river engineering have lowered rates of sediment flow. The Nile and the Indus, for example, carry 98 percent and 94 percent less mud respectively than they did 100 years ago. At the coast, rising seas resulting from warmer global temperatures are eroding delta plains, increasing the chance of flooding. Coastal lands lower than a meter in elevation will be inundated within a century.

Lack of quantitative knowledge of basic delta processes is hindering efforts to develop maintenance strategies for deltas, the authors say. At the same time, the role of healthy marshes in coastal processes needs to be more fully understood. Giosan and colleagues call for river sediment flows to be restored, and natural land-building methods to be exploited in delta plains under worldwide monitoring programs coordinated and guided by United Nations committee of experts.

Source: Woods Hole Oceanographic Institution

Protect the world's deltas, experts urge

A catastrophic landslide, one of the largest known on the surface of the Earth, took place within minutes in southwestern Utah more than 21 million years ago. Credit: Image courtesy of Kent State University
A catastrophic landslide, one of the largest known on the surface of the Earth, took place within minutes in southwestern Utah more than 21 million years ago, reports a Kent State University geologist in a paper published in the November issue of the journal Geology.

The Markagunt gravity slide, the size of three Ohio counties, is one of the two largest known continental landslides (larger slides exist on the ocean floors). David Hacker, Ph.D., associate professor of geology at Kent State University at Trumbull, and two colleagues discovered and mapped the scope of the Markagunt slide over the past two summers.
His colleagues and co-authors are Robert F. Biek of the Utah Geological Survey and Peter D. Rowley of Geologic Mapping Inc. of New Harmony, Utah.

Geologists had known about smaller portions of the Markagunt slide before the recent mapping showed its enormous extent. Hiking through the wilderness areas of the Dixie National Forest and Bureau of Land Management land, Hacker identified features showing that the Markagunt landslide was much bigger than previously known.

The landslide took place in an area between what is now Bryce Canyon National Park and the town of Beaver, Utah. It covered about 1,300 square miles, an area as big as Ohio's Cuyahoga, Portage and Summit counties combined.

Its rival in size, the "Heart Mountain slide," which took place around 50 million years ago in northwest Wyoming, was discovered in the 1940s and is a classic feature in geology textbooks.

The Markagunt could prove to be much larger than the Heart Mountain slide, once it is mapped in greater detail.
"Large-scale catastrophic collapses of volcanic fields such as these are rare but represent the largest known landslides on the surface of the Earth," the authors wrote. The length of the landslide -- over 55 miles -- also shows that it was as fast moving as it was massive, Hacker said.
Evidence showing that the slide was catastrophic -- occurring within minutes -- included the presence of pseudotachylytes, rocks that were melted into glass by the immense friction. Any animals living in its path would have been quickly overrun. Evidence of the slide is not readily apparent to visitors today. "Looking at it, you wouldn't even recognize it as a landslide," Hacker said.

But internal features of the slide, exposed in outcrops, yielded evidence such as jigsaw puzzle rock fractures and shear zones, along with the pseudotachylytes.

Hacker, who studies catastrophic geological events, said the slide originated when a volcanic field consisting of many strato-volcanoes, a type similar to Mount St. Helens in the Cascade Mountains, which erupted in 1980, collapsed and produced the massive landslide.

The collapse may have been caused by the vertical inflation of deeper magma chambers that fed the volcanoes. Hacker has spent many summers in Utah mapping geologic features of the Pine Valley Mountains south of the Markagunt where he has found evidence of similar, but smaller slides from magma intrusions called laccoliths.

What is learned about the mega-landslide could help geologists better understand these extreme types of events. The Markagunt and the Heart Mountain slides document for the first time how large portions of ancient volcanic fields have collapsed, Hacker said, representing "a new class of hazards in volcanic fields."

While the Markagunt landslide was a rare event, it shows the magnitude of what could happen in modern volcanic fields like the Cascades.

"We study events from the geologic past to better understand what could happen in the future," he said. The next steps in the research, conducted with his co-authors on the Geology paper, will be to continue mapping the slide, collect samples from the base for structural analysis and date the pseudotachylytes.

Hacker, who earned his Ph.D. in geology at Kent State, joined the faculty in 2000 after working for an environmental consulting company. He is co-author of the book Earth's Natural Hazards: Understanding Natural Disasters and Catastrophes, published in 2010.

Sun's rotating 'magnet' pulls lightning towards UK

Big Ben and Houses of Parliament, London, UK. The Sun may be playing a part in the generation of lightning strikes on Earth by temporarily 'bending' the Earth's magnetic field and allowing a shower of energetic particles to enter the upper atmosphere. Credit: © TTstudio / Fotolia
The Sun may be playing a part in the generation of lightning strikes on Earth by temporarily 'bending' the Earth's magnetic field and allowing a shower of energetic particles to enter the upper atmosphere.

This is according to researchers at the University of Reading who have found that over a five year period the UK experienced around 50% more lightning strikes when the Earth's magnetic field was skewed by the Sun's own magnetic field.

The Earth's magnetic field usually functions as an in-built force-field to shield against a bombardment of particles from space, known as galactic cosmic rays, which have previously been found to prompt a chain-reaction of events in thunderclouds that trigger lightning bolts.

It is hoped these new insights, which have been published today, 19 November, in IOP Publishing's journal Environmental Research Letters, could lead to a reliable lightning forecast system that could provide warnings of hazardous events many weeks in advance.

To do so, weather forecasters would need to combine conventional forecasts with accurate predictions of the Sun's spiral-shaped magnetic field known as the heliospheric magnetic field (HMF), which is spewed out as the Sun rotates and is dragged through the solar system by the solar wind.

Lead author of the research Dr Matt Owens said: "We've discovered that the Sun's powerful magnetic field is having a big influence on UK lightning rates.

"The Sun's magnetic field is like a bar magnet, so as the Sun rotates its magnetic field alternately points toward and away from the Earth, pulling the Earth's own magnetic field one way and then another."

In their study, the researchers used satellite and Met Office data to show that between 2001 and 2006, the UK experienced a 50% increase in thunderstorms when the HMF pointed towards the Sun and away from Earth.

This change of direction can skew or 'bend' the Earth's own magnetic field and the researchers believe that this could expose some regions of the upper atmosphere to more galactic cosmic rays--tiny particles from across the Universe accelerated to close to the speed of light by exploding stars.

"From our results, we propose that galactic cosmic rays are channelled to different locations around the globe, which can trigger lightning in already charged-up thunderclouds. The changes to our magnetic field could also make thunderstorms more likely by acting like an extra battery in the atmospheric electric circuit, helping to further 'charge up' clouds," Dr Owens continued.

The results build on a previous study by University of Reading researchers, also published in Environmental Research Letters, which found an unexpected link between energetic particles from the Sun and lightning rates on Earth.
Professor Giles Harrison, head of Reading's Department of Meteorology and co-author of both studies, said: "This latest finding is an important step forward in our knowledge of how the weather on Earth is influenced by what goes on in space. The University of Reading's continuing success in this area shows that new insights follow from atmospheric and space scientists working together."
Dr Owens continued: "Scientists have been reliably predicting the solar magnetic field polarity since the 1970s by watching the surface of the Sun. We just never knew it had any implications on the weather on Earth. We now plan to combine regular weather forecasts, which predict when and where thunderclouds will form, with solar magnetic field predictions. This means a reliable lightning forecast could now be a genuine possibility."

Source:  Institute of Physics

Invisible shield found thousands of miles above Earth blocks 'killer electrons'

Scientists have discovered an invisible shield roughly 7,200 miles above Earth.
Credit: Andy Kale, University of Alberta
A team led by the University of Colorado Boulder has discovered an invisible shield some 7,200 miles above Earth that blocks so-called "killer electrons," which whip around the planet at near-light speed and have been known to threaten astronauts, fry satellites and degrade space systems during intense solar storms.

The barrier to the particle motion was discovered in the Van Allen radiation belts, two doughnut-shaped rings above Earth that are filled with high-energy electrons and protons, said Distinguished Professor Daniel Baker, director of CU-Boulder's Laboratory for Atmospheric and Space Physics (LASP). Held in place by Earth's magnetic field, the Van Allen radiation belts periodically swell and shrink in response to incoming energy disturbances from the sun.

As the first significant discovery of the space age, the Van Allen radiation belts were detected in 1958 by Professor James Van Allen and his team at the University of Iowa and were found to be composed of an inner and outer belt extending up to 25,000 miles above Earth's surface. In 2013, Baker -- who received his doctorate under Van Allen -- led a team that used the twin Van Allen Probes launched by NASA in 2012 to discover a third, transient "storage ring" between the inner and outer Van Allen radiation belts that seems to come and go with the intensity of space weather.

The latest mystery revolves around an "extremely sharp" boundary at the inner edge of the outer belt at roughly 7,200 miles in altitude that appears to block the ultrafast electrons from breeching the shield and moving deeper towards Earth's atmosphere.

"It's almost like theses electrons are running into a glass wall in space," said Baker, the study's lead author. "Somewhat like the shields created by force fields on Star Trek that were used to repel alien weapons, we are seeing an invisible shield blocking these electrons. It's an extremely puzzling phenomenon."

A paper on the subject was published in the Nov. 27 issue of Nature.
The team originally thought the highly charged electrons, which are looping around Earth at more than 100,000 miles per second, would slowly drift downward into the upper atmosphere and gradually be wiped out by interactions with air molecules. But the impenetrable barrier seen by the twin Van Allen belt spacecraft stops the electrons before they get that far, said Baker.
The group looked at a number of scenarios that could create and maintain such a barrier. The team wondered if it might have to do with Earth's magnetic field lines, which trap and control protons and electrons, bouncing them between Earth's poles like beads on a string. 

The also looked at whether radio signals from human transmitters on Earth could be scattering the charged electrons at the barrier, preventing their downward motion. Neither explanation held scientific water, Baker said.

"Nature abhors strong gradients and generally finds ways to smooth them out, so we would expect some of the relativistic electrons to move inward and some outward," said Baker. "It's not obvious how the slow, gradual processes that should be involved in motion of these particles can conspire to create such a sharp, persistent boundary at this location in space."
Another scenario is that the giant cloud of cold, electrically charged gas called the plasmasphere, which begins about 600 miles above Earth and stretches thousands of miles into the outer Van Allen belt, is scattering the electrons at the boundary with low frequency, electromagnetic waves that create a plasmapheric "hiss," said Baker. The hiss sounds like white noise when played over a speaker, he said.

While Baker said plasmaspheric hiss may play a role in the puzzling space barrier, he believes there is more to the story. "I think the key here is to keep observing the region in exquisite detail, which we can do because of the powerful instruments on the Van Allen probes. If the sun really blasts Earth's magnetosphere with a coronal mass ejection (CME), I suspect it will breach the shield for a period of time," said Baker, also a faculty member in the astrophysical and planetary sciences department.

"It's like looking at the phenomenon with new eyes, with a new set of instrumentation, which give us the detail to say, 'Yes, there is this hard, fast boundary,'" said John Foster, associate director of MIT's Haystack Observatory and a study co-author.

Subtle shifts in the Earth could forecast earthquakes, tsunamis

University of South Florida graduate student Denis Voytenko prepares a GPS unit for a high-precision geodetic measurement.
Credit: Jacob Richardson
Earthquakes and tsunamis can be giant disasters no one sees coming, but now an international team of scientists led by a University of South Florida professor has found that subtle shifts in Earth's offshore plates can be a harbinger of the size of the disaster.

In a new paper published in the Proceedings of the National Academy of Sciences, USF geologist Tim Dixon and the team report that a geological phenomenon called "slow slip events" identified just 15 years ago is a useful tool in identifying the precursors to major earthquakes and the resulting tsunamis. The scientists used high precision GPS to measure the slight shifts on a fault line in Costa Rica, and say better monitoring of these small events can lead to better understanding of maximum earthquake size and tsunami risk.

"Giant earthquakes and tsunamis in the last decade -- Sumatra in 2004 and Japan in 2011 -- are a reminder that our ability to forecast these destructive events is painfully weak," Dixon said.
Dixon was involved in the development of high precision GPS for geophysical applications, and has been making GPS measurements in Costa Rica since 1988, in collaboration with scientists at Observatorio Vulcanológico y Sismológico de Costa Rica, the University of California-Santa Cruz, and Georgia Tech. The project is funded by the National Science Foundation.
Slow slip events have some similarities to earthquakes (caused by motion on faults) but release their energy slowly, over weeks or months, and cannot be felt or even recorded by conventional seismographs, Dixon said. Their discovery in 2001 by Canadian scientist Herb Dragert at the Pacific Geoscience Center had to await the development of high precision GPS, which is capable of measuring subtle movements of the Earth.
The scientists studied the Sept. 5, 2012 earthquake on the Costa Rica subduction plate boundary, as well as motions of the Earth in the previous decade. High precision GPS recorded numerous slow slip events in the decade leading up to the 2012 earthquake. The scientists made their measurements from a peninsula overlying the shallow portion of a megathrust fault in northwest Costa Rica.
The 7.6-magnitude quake was one of the strongest earthquakes ever to hit the Central American nation and unleased more than 1,600 aftershocks. Marino Protti, one of the authors of the paper and a resident of Costa Rica, has spent more than two decades warning local populations of the likelihood of a major earthquake in their area and recommending enhanced building codes.

A tsunami warning was issued after the quake, but only a small tsunami occurred. The group's finding shed some light on why: slow slip events in the offshore region in the decade leading up to the earthquake may have released much of the stress and strain that would normally occur on the offshore fault.

While the group's findings suggest that slow slip events have limited value in knowing exactly when an earthquake and tsunami will strike, they suggest that these events provide critical hazard assessment information by delineating rupture area and the magnitude and tsunami potential of future earthquakes.

The scientists recommend monitoring slow slip events in order to provide accurate forecasts of earthquake magnitude and tsunami potential.

Source: University of South Florida (USF Health)

Geologists discover ancient buried canyon in South Tibet

This photo shows the Yarlung Tsangpo Valley close to the Tsangpo Gorge, where it is rather narrow and underlain by only about 250 meters of sediments. The mountains in the upper left corner belong to the Namche Barwa massif. Previously, scientists had suspected that the debris deposited by a glacier in the foreground was responsible for the formation of the steep Tsangpo Gorge -- the new discoveries falsify this hypothesis. Credit: Ping Wang
A team of researchers from Caltech and the China Earthquake Administration has discovered an ancient, deep canyon buried along the Yarlung Tsangpo River in south Tibet, north of the eastern end of the Himalayas. The geologists say that the ancient canyon--thousands of feet deep in places--effectively rules out a popular model used to explain how the massive and picturesque gorges of the Himalayas became so steep, so fast.

"I was extremely surprised when my colleagues, Jing Liu-Zeng and Dirk Scherler, showed me the evidence for this canyon in southern Tibet," says Jean-Philippe Avouac, the Earle C. Anthony Professor of Geology at Caltech. "When I first saw the data, I said, 'Wow!' It was amazing to see that the river once cut quite deeply into the Tibetan Plateau because it does not today. That was a big discovery, in my opinion."
Geologists like Avouac and his colleagues, who are interested in tectonics--the study of the earth's surface and the way it changes--can use tools such as GPS and seismology to study crustal deformation that is taking place today. But if they are interested in studying changes that occurred millions of years ago, such tools are not useful because the activity has already happened. In those cases, rivers become a main source of information because they leave behind geomorphic signatures that geologists can interrogate to learn about the way those rivers once interacted with the land--helping them to pin down when the land changed and by how much, for example.
"In tectonics, we are always trying to use rivers to say something about uplift," Avouac says. 

"In this case, we used a paleocanyon that was carved by a river. It's a nice example where by recovering the geometry of the bottom of the canyon, we were able to say how much the range has moved up and when it started moving."

The team reports its findings in the current issue of Science.

Last year, civil engineers from the China Earthquake Administration collected cores by drilling into the valley floor at five locations along the Yarlung Tsangpo River. Shortly after, former Caltech graduate student Jing Liu-Zeng, who now works for that administration, returned to Caltech as a visiting associate and shared the core data with Avouac and Dirk Scherler, then a postdoc in Avouac's group. Scherler had previously worked in the far western Himalayas, where the Indus River has cut deeply into the Tibetan Plateau, and immediately recognized that the new data suggested the presence of a paleocanyon.

Liu-Zeng and Scherler analyzed the core data and found that at several locations there were sedimentary conglomerates, rounded gravel and larger rocks cemented together, that are associated with flowing rivers, until a depth of 800 meters or so, at which point the record clearly indicated bedrock. This suggested that the river once carved deeply into the plateau.
To establish when the river switched from incising bedrock to depositing sediments, they measured two isotopes, beryllium-10 and aluminum-26, in the lowest sediment layer. The isotopes are produced when rocks and sediment are exposed to cosmic rays at the surface and decay at different rates once buried, and so allowed the geologists to determine that the paleocanyon started to fill with sediment about 2.5 million years ago.

The researchers' reconstruction of the former valley floor showed that the slope of the river once increased gradually from the Gangetic Plain to the Tibetan Plateau, with no sudden changes, or knickpoints. Today, the river, like most others in the area, has a steep knickpoint where it meets the Himalayas, at a place known as the Namche Barwa massif. There, the uplift of the mountains is extremely rapid (on the order of 1 centimeter per year, whereas in other areas 5 millimeters per year is more typical) and the river drops by 2 kilometers in elevation as it flows through the famous Tsangpo Gorge, known by some as the Yarlung Tsangpo Grand Canyon because it is so deep and long.

Combining the depth and age of the paleocanyon with the geometry of the valley, the geologists surmised that the river existed in this location prior to about 3 million years ago, but at that time, it was not affected by the Himalayas. However, as the Indian and Eurasian plates continued to collide and the mountain range pushed northward, it began impinging on the river. Suddenly, about 2.5 million years ago, a rapidly uplifting section of the mountain range got in the river's way, damming it, and the canyon subsequently filled with sediment.

"This is the time when the Namche Barwa massif started to rise, and the gorge developed," says Scherler, one of two lead authors on the paper and now at the GFZ German Research Center for Geosciences in Potsdam, Germany.

That picture of the river and the Tibetan Plateau, which involves the river incising deeply into the plateau millions of years ago, differs quite a bit from the typically accepted geologic vision. Typically, geologists believe that when rivers start to incise into a plateau, they eat at the edges, slowly making their way into the plateau over time. However, the rivers flowing across the Himalayas all have strong knickpoints and have not incised much at all into the Tibetan Plateau. Therefore, the thought has been that the rapid uplift of the Himalayas has pushed the rivers back, effectively pinning them, so that they have not been able to make their way into the plateau. But that explanation does not work with the newly discovered paleocanyon.

The team's new hypothesis also rules out a model that has been around for about 15 years, called tectonic aneurysm, which suggests that the rapid uplift seen at the Namche Barwa massif was triggered by intense river incision. In tectonic aneurysm, a river cuts down through the earth's crust so fast that it causes the crust to heat up, making a nearby mountain range weaker and facilitating uplift.

The model is popular among geologists, and indeed Avouac himself published a modeling paper in 1996 that showed the viability of the mechanism. "But now we have discovered that the river was able to cut into the plateau way before the uplift happened," Avouac says, "and this shows that the tectonic aneurysm model was actually not at work here. The rapid uplift is not a response to river incision."

Exploring a large, restless volcanic field in Chile

Laguna del Maule, Chile, is at the center of a volcanic field that has erupted 36 times during the last 25,000 years, and is now experiencing significant uplift due to magma intrusion.
Credit: David Tenenbaum
If Brad Singer knew for sure what was happening three miles under an odd-shaped lake in the Andes, he might be less eager to spend a good part of his career investigating a volcanic field that has erupted 36 times during the last 25,000 years. As he leads a large scientific team exploring a region in the Andes called Laguna del Maule, Singer hopes the area remains quiet.

But the primary reason to expend so much effort on this area boils down to one fact: The rate of uplift is among the highest ever observed by satellite measurement for a volcano that is not actively erupting.

That uplift is almost definitely due to a large intrusion of magma -- molten rock -- beneath the volcanic complex. For seven years, an area larger than the city of Madison has been rising by 10 inches per year.

That rapid rise provides a major scientific opportunity: to explore a mega-volcano before it erupts. That effort, and the hazard posed by the restless magma reservoir beneath Laguna del Maule, are described in a major research article in the December issue of the Geological Society of America's GSA Today.

"We've always been looking at these mega-eruptions in the rear-view mirror," says Singer. 

"We look at the lava, dust and ash, and try to understand what happened before the eruption. Since these huge eruptions are rare, that's usually our only option. But we look at the steady uplift at Laguna del Maule, which has a history of regular eruptions, combined with changes in gravity, electrical conductivity and swarms of earthquakes, and we suspect that conditions necessary to trigger another eruption are gathering force."

Laguna del Maule looks nothing like a classic, cone-shaped volcano, since the high-intensity erosion caused by heavy rain and snow has carried most of the evidence to the nearby Pacific Ocean. But the overpowering reason for the absence of "typical volcano cones" is the nature of the molten rock underground. It's called rhyolite, and it's the most explosive type of magma on the planet.

The eruption of a rhyolite volcano is too quick and violent to build up a cone. Instead, this viscous, water-rich magma often explodes into vast quantities of ash that can form deposits hundreds of yards deep, followed by a slower flow of glassy magma that can be tens of yards tall and measure more than a mile in length.

The next eruption could be in the size range of Mount St. Helens -- or it could be vastly bigger, Singer says. "We know that over the past million years or so, several eruptions at Laguna del Maule or nearby volcanoes have been more than 100 times larger than Mount St. Helens," he says. "Those are rare, but they are possible." Such a mega-eruption could change the weather, disrupt the ecosystem and damage the economy.
Trying to anticipate what Laguna del Maule holds in store, Singer is heading a new $3 million, five-year effort sponsored by the National Science Foundation to document its behavior before an eruption. With colleagues from Chile, Argentina, Canada, Singapore, and Cornell and Georgia Tech universities, he is masterminding an effort to build a scientific model of the underground forces that could lead to eruption. "This model should capture how this system has evolved in the crust at all scales, from the microscopic to basinwide, over the last 100,000 years," Singer says. "It's like a movie from the past to the present and into the future."
Over the next five years, Singer says he and 30 colleagues will "throw everything, including the kitchen sink, at the problem -- geology, geochemistry, geochronology and geophysics -- to help measure, and then model, what's going on."

One key source of information on volcanoes is seismic waves. Ground shaking triggered by the movement of magma can signal an impending eruption. Team member Clifford Thurber, a seismologist and professor of geoscience at UW-Madison, wants to use distant earthquakes to locate the underground magma body.

As many as 50 seismometers will eventually be emplaced above and around the magma at Laguna del Maule, in the effort to create a 3-D image of Earth's crust in the area.

By tracking multiple earthquakes over several years, Thurber and his colleagues want to pinpoint the size and location of the magma body -- roughly estimated as an oval measuring five kilometers (3.1 miles) by 10 kilometers (6.2 miles).

Each seismometer will record the travel time of earthquake waves originating within a few thousand kilometers, Thurber explains. Since soft rock transmits sound less efficiently than hard rock, "we expect that waves that pass through the presumed magma body will be delayed," Thurber says. "It's very simple. It's like a CT scan, except instead of density we are looking at seismic wave velocity."

As Singer, who has been visiting Laguna del Maule since 1998, notes, "The rate of uplift -- among the highest ever observed -- has been sustained for seven years, and we have discovered a large, fluid-rich zone in the crust under the lake using electrical resistivity methods. Thus, there are not many possible explanations other than a big, active body of magma at a shallow depth."

The expanding body of magma could freeze in place -- or blow its top, he says. "One thing we know for sure is that the surface cannot continue rising indefinitely."

Source:  University of Wisconsin-Madison

Re-thinking Southern California earthquake scenarios in Coachella Valley, San Andreas Fault

New 3D numerical modeling that captures more geometric complexity of an active fault segment in southern California than any other suggests that the overall earthquake hazard for towns on the west side of the Coachella Valley such as Palm Springs may be slightly lower than previously believed. Credit: Courtesy Google Earth and UMass Amherst
New three-dimensional (3D) numerical modeling that captures far more geometric complexity of an active fault segment in southern California than any other, suggests that the overall earthquake hazard for towns on the west side of the Coachella Valley such as Palm Springs and Palm Desert may be slightly lower than previously believed.

New simulations of deformation on three alternative fault configurations for the Coachella Valley segment of the San Andreas Fault conducted by geoscientists Michele Cooke and Laura Fattaruso of the University of Massachusetts Amherst, with Rebecca Dorsey of the University of Oregon, appear in the December issue of Geosphere.
The Coachella Valley segment is the southernmost section of the San Andreas Fault in California. It has a high likelihood for a large rupture in the near future, since it has a recurrence interval of about 180 years but has not ruptured in over 300 years, the authors point out.
The researchers acknowledge that their new modeling offers "a pretty controversial interpretation" of the data. Many geoscientists do not accept a dipping active fault geometry to the San Andreas Fault in the Coachella Valley, they say. Some argue that the data do not confirm the dipping structure. "Our contribution to this debate is that we add an uplift pattern to the data that support a dipping active fault and it rejects the other models," say Cooke and colleagues.

Their new model yields an estimated 10 percent increase in shaking overall for the Coachella segment. But for the towns to the west of the fault where most people live, it yields decreased shaking due to the dipping geometry. It yields a doubling of shaking in mostly unpopulated areas east of the fault. "This isn't a direct outcome of our work but an implication," they add.

Cooke says, "Others have used a dipping San Andreas in their models but they didn't include the degree of complexity that we did. By including the secondary faults within the Mecca Hills we more accurately capture the uplift pattern of the region."

Fattaruso adds, "Others were comparing to different data sets, such as geodesy, and since we were comparing to uplift it is important that we have this complexity." In this case, geodesy is the science of measuring and representing the Earth and its crustal motion, taking into account the competition of geological processes in 3D over time.

Most other models of deformation, stress, rupture and ground shaking have assumed that the southern San Andreas Fault is vertical, say Cooke and colleagues. However, seismic, imaging, aerial magnetometric surveys and GPS-based strain observations suggest that the fault dips 60 to 70 degrees toward the northeast, a hypothesis they set out to investigate.
Specifically, they explored three alternative geometric models of the fault's Coachella Valley segment with added complexity such as including smaller faults in the nearby Indio and Mecca Hills. "We use localized uplift patterns in the Mecca Hills to assess the most plausible geometry for the San Andreas Fault in the Coachella Valley and better understand the interplay of fault geometry and deformation," they write.
Cooke and colleagues say the fault structures in their favored model agree with distributions of local seismicity, and are consistent with geodetic observations of recent strain. "Crustal deformation models that neglect the northeast dip of the San Andreas Fault in the Coachella Valley will not replicate the ground shaking in the region and therefore inaccurately estimate seismic hazard," they note.

This work was supported by the National Science Foundation.

Source:  University of Massachusetts at Amherst

Colorado's Front Range fire severity not much different than past

A new study indicates present-day forest fires on Colorado's Front Range are not significantly more intense than historical fires. Credit: Glenn Asakawa, University of Colorado
The perception that Colorado's Front Range wildfires are becoming increasingly severe does not hold much water scientifically, according to a massive new study led by the University of Colorado Boulder and Humboldt State University in Arcata, Calif.

The study authors, who looked at 1.3 million acres of ponderosa pine and mixed conifer forest from Teller County west of Colorado Springs through Larimer County west and north of Fort Collins, reconstructed the timing and severity of past fires using fire-scarred trees and tree-ring data going back to the 1600s. Only 16 percent of the study area showed a shift from historically low-severity fires to severe, potential crown fires that can jump from treetop to treetop.

The idea that modern fires are larger and more severe as a result of fire suppression that allowed forest fuels to build up in the past century is still prevalent among some, said CU-Boulder geography Professor Thomas Veblen, a study co-author. "The key point here is that modern fires in these Front Range forests are not radically different from the fire severity of the region prior to any effects of fire suppression," he said.

A paper on the subject was published Sept. 24 in the journal PLOS ONE. The study was led by Associate Professor Rosemary Sherriff of Humboldt State University and involved Research Scientist Tania Schoennagel of CU-Boulder's Institute of Arctic and Alpine Research, CU-Boulder doctoral student Meredith Gartner and Associate Professor Rutherford Platt of Gettysburg College in Gettysburg, Pa.

The study was funded by the National Science Foundation.

"The common assumption is that fires are now more severe and are killing higher percentages of trees," said Sherriff, who completed her doctorate at CU-Boulder under Veblen in 2004. "Our results show that this is not the case on the Front Range except for the lowest elevation forests and woodlands."

One important new finding comes from a comparison of nine large fires that have occurred on the Front Range since 2000 -- including the 2002 Hayman Fire southwest of Denver, the 2010 Fourmile Canyon Fire west of Boulder and the 2012 High Park Fire west of Fort Collins -- with historic fire effects in the region.

"It's true that the Colorado Front Range has experienced a number of large fires recently," said Schoennagel. "While more area has burned recently compared to prior decades -- with more homes coming into the line of fire -- the severity of recent fires is not unprecedented when we look at fire records going back before the 1900s."
In addition, tree-ring evidence from the new study shows there were several years on the Front Range since the 1650s when there were very large, severe fires. The authors looked at more than 1,200 fire-scarred tree samples and nearly 8,000 samples of tree ages at 232 forest sample sites from Teller County to Larimer County.
The study is one of the largest of its kind ever undertaken in the western United States. The team was especially interested in fire records before about 1920, when effective fire suppression in the West began in earnest.

"In relatively dry ponderosa pine forests of the West, a common assumption is that fires were relatively frequent and of low severity, and not lethal to most large trees, prior to fuel build-up in the 20th century," said Veblen. "But our study results showed that about 70 percent of the forest study area experienced a combination of moderate and high-severity fires in which large percentages of the mature trees were killed."

Along the Front Range, especially at higher elevations, homeowners and fire managers should expect a number of high-severity fires unrelated to any kind of fire suppression and fuel build-up, said Schoennagel. "This matters because high-severity fires are dangerous to people, kill more trees and are trickier and more expensive to suppress."

"Severe fires are not new to most forests in this region," said Sherriff. "What is new is the expanded wildland-urban interface hazard to people and property and the high cost of suppressing fires for society."

In addition, a warming Colorado climate -- 2 degrees Fahrenheit since 1977 -- has become a wild card regarding future Front Range fires, according to the team. While fires are dependent on ignition sources and can be dramatically influenced by high winds, the team expects to see a substantial increase in Front Range fire activity in the low and mid-elevations in the coming years as temperatures continue to warm, a result of rising greenhouses gases in Earth's atmosphere.

Source: University of Colorado at Boulder

Mountain pine beetles get bad rap for wildfires, study says

Following wildfires in 2011, a UW-Madison research team studied lodgepole pine trees in the Northern Rocky Mountains to examine whether earlier outbreaks of mountain pine beetles changed the ecological impact of the wildfires. Credit: Turner Lab
Mountain pine beetles get a bad rap, and understandably so. The grain-of-rice-sized insects are responsible for killing pine trees over tens of millions of acres in the Western U.S. and Canada over the last decade.

But contrary to popular belief, these pests may not be to blame for more severe wildfires like those that have recently swept through the region. Instead, weather and topography play a greater role in the ecological severity of fires than these bark-boring beetles.

New research led by the University of Wisconsin-Madison and the Washington State Department of Natural Resources provides some of the first rigorous field data to test whether fires that burn in areas impacted by mountain pine beetles are more ecologically severe than in those not attacked by the native bug.
In a study published this week in the Proceedings of the National Academy of Sciences, UW-Madison zoology professor Monica Turner and her graduate student, Brian Harvey, show pine beetle outbreaks contributed little to the severity of six wildfires that affected more than 75,000 acres in the Northern Rocky Mountains in 2011. They also show that the beetle outbreaks, which occurred from 2000 through 2010, have not directly impacted post-fire recovery of the forests. The study does not, however, address fire behavior, such as how quickly fires spread or how dangerous they are to fight.
While the findings may exonerate the insect scapegoats, they should also help ecosystem managers better respond to changes in the face of climate-driven disturbances, like drought and warmer temperatures.

Large, severe fires are typical in the lodgepole pine forests found throughout the region, even without mountain pine beetle outbreaks. However, as the climate has warmed, outbreaks and big fires have both become more common. The phenomenon of more beetles has meant more dead trees, and some have grown concerned about how beetle attacks and wildfires may interact.

"The conventional wisdom is that a forest of dead trees is a tinder box just waiting to burn up," says Turner, who has long studied the forest landscape of the Mountain West. "There were very little data out there but a lot of concern."

Forests attacked by bark beetles -- which burrow into the bark of lodgepole pines to mate and incubate their larvae -- can seem nothing more than ample kindling for a raging blaze, with their dead wood and dry, reddish-brown needles.

The burrows the beetles carve under the bark of pines, called galleries, choke off water and nutrient circulation in the trees. The trees die and, for the first couple of years, they hold on to their dry, lifeless needles. Scientists call this the "red stage," and some believe these trees could fuel more severe fires.

By year three, most beetle-attacked trees have entered the "gray stage," dropping their once green pine foliage, becoming needleless wood carcasses.

Earlier studies from Turner's group suggested that beetle outbreaks would not lead to more severe fires. But without actual fires, the interaction could not be tested.

However, in 2011, wildfires throughout eastern Idaho and western Montana -- in forests that had experienced varying mountain pine beetle outbreak impacts -- provided opportunity for the research team to begin to answer the question: Do the two disturbances, beetle attacks and wildfire, together change the ecological response of the forest to fire?

Fortunately for the team, among the burned areas studied were pine stands that had not been attacked by beetles. These areas served as controls. Others suffered a range of mortality from the beetles; in some stands, beetles killed nearly 90 percent of the trees prior to wildfire. The fires that raged also ran the spectrum of severity, allowing the researchers to compare a number of variables.

Some study plots comprised mostly live trees, while others contained mostly red-stage or gray-stage trees -- allowing the researchers to assess whether plots with red-stage trees (with dry needles) experienced greater levels of fire severity than plots with mostly gray-stage trees (no needles), as they and others had expected.

The study team examined ecosystem indicators of fire severity, such as how many trees were killed by fire and how much char covered the forests.

Engaging in what Harvey calls "post-fire detective work," in 2012, the scientific team evaluated fire severity in each study plot and stripped sections of bark from over 10,000 trees to determine what killed them, beetles or fire. Beetle galleries can remain visible under the bark even after fire.

As they sifted through the blackened trees and forest floor, the team became covered with ash and soot.

"We looked like coal miners when we were done," says Harvey.

They found that the severity of the outbreak and whether trees were in the red or gray stage had almost no effect on fire severity under moderate burning conditions.

Only under more extreme fire-burning conditions -- when it was hot, dry and windy -- did areas with more beetle-killed trees show signs of more ecologically severe fires, such as more deeply burned trunks and crowns (the part of the tree that includes its limbs and needles). The presence of more gray-stage trees actually had a stronger impact on fire severity than the amount of red-stage trees, to the surprise of the scientists.

Overall, however, Turner says the effects of beetle outbreaks on fire severity took a back seat to stronger drivers -- primarily weather and topography. Fire severity increased under more extreme weather, regardless of pre-fire outbreaks, and forest stands higher in the landscape burned more severely than those at lower elevation as fires moved uphill, building momentum.

"No one says beetle-killed forests won't burn," says Turner. "The data set looks at whether they burn with different severity compared to unattacked forests burning under similar conditions."

The team was also interested in whether beetle outbreaks slowed the recovery of the forests after fires. Lodgepole pines are adapted to fire, containing two types of seed-carrying cones: those that release seeds as soon as they mature and those that require fire to open, blanketing the forest floor with potential new life following a blaze.

By counting the number of post-fire tree seedlings in their plots, the researchers found very little beetle-related impact. Tree seedlings were most numerous where more of the fire-killed trees bore the fire-adapted, or serotinous, cones. Beetle-killed trees likely contributed to post-fire seedling establishment, too, as their seeds remain viable in cones if they are not consumed in fire. Only high-reaching char from tall flames reduced the number of seed-spreading cones.

The scientists emphasize the results may differ in other forest types or with different lengths of time between beetle outbreaks and fire.

"These are both natural disturbances, fire and beetle outbreaks," says Turner. "It's not surprising the ecosystem has these mechanisms to be resilient. What we as people see as catastrophes are not always catastrophes to the ecosystem."

Climate change not responsible for altering forest tree composition, experts say

Eastern US forest canopy. Credit: Mary Ann Fajvan, West Virginia University, Bugwood.org
Change in disturbance regimes -- rather than a change in climate -- is largely responsible for altering the composition of Eastern forests, according to a researcher in Penn State's College of Agricultural Sciences.

Forests in the Eastern United States remain in a state of "disequilibrium" stemming from the clear-cutting and large-scale burning that occurred in the late 1800s and early 1900s, contends Marc Abrams, professor of forest ecology and physiology.

Moreover, Abrams noted, since about 1930 -- during the Smokey Bear era -- aggressive forest-fire suppression has had a far greater influence on shifts in dominant tree species than minor differences in temperature.

"Looking at the historical development of Eastern forests, the results of the change in types of disturbances -- both natural and man-caused -- are much more significant than any change in climate," said Abrams, who is the Steimer Professor of Agriculture in the Department of Ecosystem Science and Management.

"Over the last 50 years, most environmental science has focused on the impact of climate change. In some systems, however, climate change impacts have not been as profound as in others. This includes the forest composition of the eastern U.S."

To determine how forest tree species have responded to changes in disturbance regimes, temperature and precipitation over long periods of time, Abrams collaborated with Gregory Nowacki, a scientist with the U.S. Department of Agriculture Forest Service office in Milwaukee, on a study of the tolerance and sensitivity of trees to various factors.

"Many ecological phenomena combine to direct vegetation trends over time, with climate and disturbance playing prominent roles," said Nowacki, who received his Ph.D under Abrams. "To help decipher their relative importance during Euro-American times, we employed a unique approach whereby tree species/genera were partitioned into temperature, shade tolerance and pyrogenicity classes and applied to comparative tree-census data."

The researchers compared presettlement -- original land survey data -- and current vegetation conditions in the eastern United States. Early tree surveys chronicle the westward progression of European land acquisition, with some dating back to the 1600s along the East Coast.

In the research, published online in Global Change Biology, researchers analyzed 190 datasets to determine the relative impacts of climate versus altered disturbance regimes for various biomes across the eastern United States. Because the Euro-American period from 1500 to today spans two major climatic periods -- from the Little Ice Age to the current Anthropocene -- the researchers expected vegetation changes consistent with warming.

"In most cases, however, European disturbance overrode regional climate change," Abrams said. "To the north, intensive and expansive early European disturbance resulted in the ubiquitous loss of conifers and large increases of Acer (maple), Populus (poplar) and Quercus (oak) in northern hardwoods, whereas to the south, these disturbances perpetuated the dominance of oak in central hardwoods."

Maple increases and associated mesophication -- the forest growing increasingly dense, cool, shady and moist in the absence of regular fire -- in oak-pine systems were delayed until mid-20th century fire suppression. This led to significant warm-to-cool shifts in temperature in which cool-adapted sugar maple increased and caused temperature-neutral changes in which warm-adapted red maple increased.

"In both cases, these shifts were attributed to fire suppression rather than climate change," Abrams said. "Because mesophication is ongoing, eastern U.S. forests formed during the catastrophic disturbance era followed by fire suppression will remain in climate disequilibrium into the foreseeable future."

Overall, he concluded, the results of the study suggest that altered disturbance regimes rather than climate had the greatest influence on vegetation composition and dynamics in the eastern United States over multiple centuries.

"Land-use change often trumped or negated the impacts of warming climate, and this needs greater recognition in climate change discussions, scenarios and model interpretations," he said.

Source: Penn State
Environment Now
Technology+Physics
Health + Medicine
Plants + Animals
SPACE + TIME
Science + Society

 
BREAKING NEWS