-->
LATEST HEADLINES
66th REPUBLIC DAY WISHES TO ALL INDIANSZizix Tutorials
LATEST POSTS TIME OF NOW
Showing posts with label DARK ENERGY. Show all posts
Showing posts with label DARK ENERGY. Show all posts

Gravity may have saved the universe after the Big Bang, say researchers

Center of the Milky Way galaxy (stock image). Credit: © DR / Fotolia
New research by a team of European physicists could explain why the universe did not collapse immediately after the Big Bang.

Studies of the Higgs particle -- discovered at CERN in 2012 and responsible for giving mass to all particles -- have suggested that the production of Higgs particles during the accelerating expansion of the very early universe (inflation) should have led to instability and collapse.

Scientists have been trying to find out why this didn't happen, leading to theories that there must be some new physics that will help explain the origins of the universe that has not yet been discovered. Physicists from Imperial College London, and the Universities of Copenhagen and Helsinki, however, believe there is a simpler explanation.

In a new study in Physical Review Letters, the team describe how the spacetime curvature -- in effect, gravity -- provided the stability needed for the universe to survive expansion in that early period. The team investigated the interaction between the Higgs particles and gravity, taking into account how it would vary with energy.

They show that even a small interaction would have been enough to stabilise the universe against decay.

"The Standard Model of particle physics, which scientists use to explain elementary particles and their interactions, has so far not provided an answer to why the universe did not collapse following the Big Bang," explains Professor Arttu Rajantie, from the Department of Physics at Imperial College London.

"Our research investigates the last unknown parameter in the Standard Model -- the interaction between the Higgs particle and gravity. This parameter cannot be measured in particle accelerator experiments, but it has a big effect on the Higgs instability during inflation. Even a relatively small value is enough to explain the survival of the universe without any new physics!"

The team plan to continue their research using cosmological observations to look at this interaction in more detail and explain what effect it would have had on the development of the early universe. In particular, they will use data from current and future European Space Agency missions measuring cosmic microwave background radiation and gravitational waves.

"Our aim is to measure the interaction between gravity and the Higgs field using cosmological data," says Professor Rajantie. "If we are able to do that, we will have supplied the last unknown number in the Standard Model of particle physics and be closer to answering fundamental questions about how we are all here."

The research is funded by the Science and Technology Facilities Council, along with the Villum Foundation, in Denmark, and the Academy of Finland.

Physicists suggest new way to detect dark matter

This is associate professor Chris Kouvaris from the University of Southern Denmark. Credit: University of Southern Denmark
For years physicists have been looking for the universe's elusive dark matter, but so far no one has seen any trace of it. Maybe we are looking in the wrong place? Now physicists from University of Southern Denmark propose a new technique to detect dark matter.

The universe consists of atoms and particles -- and a whole lot more that still needs to be detected. We can only speculate about the existence of this unknown matter and energy.

"We know that app. 5 pct. of the universe consists of the known matter we are all made of. 

The rest is unknown. This unknown matter is called dark matter, and we believe that it is all around us, including here on Earth," explains Chris Kouvaris, associate professor at the Centre for Cosmology and Particle Physics Phenomenology (CP3-Origins), Department of Physics, Chemistry and Pharmacy, University of Southern Denmark.

He and his colleague from CP3-Origins, postdoc Ian Shoemaker, now suggest a new way to detect the existence of the elusive dark matter.

Cosmic noise is a problem

Over the last years, physicists have placed detectors in underground sites app. a kilometer or more deep in order to detect dark matter. The idea is that dark matter is easier to detect in deep sites because there is less noise from cosmic or Earth-produced radiation that can potentially cover the dark matter signal. This approach of detecting dark matter makes sense provided that dark matter interacts only a bit with atoms as it goes underground. The scientific term for this is that dark matter is weakly interacting with its surroundings.

"But we don't know if dark matter is that weakly interacting. In principle dark matter particles can lose energy as they travel underground before they hit the detector due to interactions with regular atoms. And in that case they might not have enough energy left to trigger the detector once they arrive there," says Chris Kouvaris.

Signals are good 12 hours a day

In a new research paper, he and Shoemaker study the possibility that dark matter can indeed interact substantially with atoms. They claim that depending on the properties of the dark matter particles, deep placed detectors can be blind because particles might have lost most of their energy before reaching the detector.

"In such a case, it would make more sense to look for dark matter signals on the surface of the Earth or in shallow sites," Kouvaris argues.

Placing a detector in shallow sites or on the surface ensures small energy loss for the dark matter particles but it also means a big increase in the background noise. This was after all the reason why detectors were placed in deep sites in the first place. To overcome this problem Kouvaris and Shoemaker propose -- instead of trying to detect a single collision of a dark matter particle with the detector -- to look for a signal that varies periodically during the day.

Because dark matter particles approach the detector from various directions, as the Earth rotates, the flux of the particles reaching the detector can vary. This causes a signal that will go from maximum to minimum in 12 hours and back to maximum again after another 12 hours.

Such a pattern will make the signals from dark matter stand out clear even though the detectors also pick up cosmic noise.

"The best locations for the observation of such a modulation signal are places in the south hemisphere with latitude around 40 degrees, such as Argentina, Chile and New Zealand" says Chris Kouvaris.

What is dark matter and dark energy?

27 pct. of the universe is believed to consist of dark matter. Dark matter is believed to be the "glue" that holds galaxies together. Nobody knows what dark matter really is.

5 pct. of the universe consists of known matter such as atoms and subatomic particles.
The rest of the universe is believed to consist of dark energy. Dark energy is believed to make the universe expand.

Source: University of Southern Denmark

Researchers detect possible signal from dark matter

Could there finally be tangible evidence for the existence of dark matter in the Universe? After sifting through reams of X-ray data, scientists in EPFL's Laboratory of Particle Physics and Cosmology (LPPC) and Leiden University believe they could have identified the signal of a particle of dark matter. Credit: Image courtesy of Ecole Polytechnique Fédérale de Lausanne (screen shot from video)
Could there finally be tangible evidence for the existence of dark matter in the Universe? After sifting through reams of X-ray data, scientists in EPFL's Laboratory of Particle Physics and Cosmology (LPPC) and Leiden University believe they could have identified the signal of a particle of dark matter. This substance, which up to now has been purely hypothetical, is run by none of the standard models of physics other than through the gravitational force. Their research will be published next week in Physical Review Letters.

When physicists study the dynamics of galaxies and the movement of stars, they are confronted with a mystery. If they only take visible matter into account, their equations simply don't add up: the elements that can be observed are not sufficient to explain the rotation of objects and the existing gravitational forces. There is something missing. From this they deduced that there must be an invisible kind of matter that does not interact with light, but does, as a whole, interact by means of the gravitational force. Called "dark matter," this substance appears to make up at least 80% of the Universe.
Andromeda and Perseus revisited

Two groups have recently announced that they have detected the much sought after signal. One of them, led by EPFL scientists Oleg Ruchayskiy and Alexey Boyarsky, also a professor at Leiden University in the Netherlands, found it by analyzing X-rays emitted by two celestial objects -- the Perseus galaxy cluster and the Andromeda galaxy. After having collected thousands of signals from the ESA's XMM-Newton telescope and eliminated all those coming from known particles and atoms, they detected an anomaly that, even considering the possibility of instrument or measurement error, caught their attention.

The signal appears in the X-ray spectrum as a weak, atypical photon emission that could not be attributed to any known form of matter. Above all, "the signal's distribution within the galaxy corresponds exactly to what we were expecting with dark matter, that is, concentrated and intense in the center of objects and weaker and diffuse on the edges," explains Ruchayskiy. "With the goal of verifying our findings, we then looked at data from our own galaxy, the Milky Way, and made the same observations," says Boyarsky.

A new era

The signal comes from a very rare event in the Universe: a photon emitted due to the destruction of a hypothetical particle, possibly a "sterile neutrino." If the discovery is confirmed, it will open up new avenues of research in particle physics. Apart from that, "It could usher in a new era in astronomy," says Ruchayskiy. "Confirmation of this discovery may lead to construction of new telescopes specially designed for studying the signals from dark matter particles," adds Boyarsky. "We will know where to look in order to trace dark structures in space and will be able to reconstruct how the Universe has formed."

WATCH VIDEO


Source: Ecole Polytechnique Fédérale de Lausanne
Environment Now
Technology+Physics
Health + Medicine
Plants + Animals
SPACE + TIME
Science + Society

 
BREAKING NEWS